

BINAH DEVELOPMENT PTY LTD

Detailed Site Investigation

26 Elizabeth Street, Liverpool, NSW

Report E23796.E02_Rev1 9 November 2018

REPORT DISTRIBUTION

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW

El Report No.: E23796.E02_Rev1 Date: 9 November 2018

Copies		Recipient	
1	Soft Copy (PDF – Secured, issued by email)	Binah Development Pty Ltd	
		Suite 7, Level 3, 26	
		Castlereagh Street, Liverpool	
Original (Saved to Digital Archives)		El Australia	
		Suite 6.01, 55 Miller Street,	
		PYRMONT NSW 2009	
Author		Technical Reviewer	

SHARON LI Environmental / Geotechnical Scientist

TONY GUIRGUIS Senior Engineer

Revision	Details	Date	Amended By
0	Original	25 May 2018	-
1	Revised Development Plan	9 November 2018	S.L.

© 2018 El Australia (El)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

EXECUTIVE SUMMARY

The property located at 26 Elizabeth Street, Liverpool NSW was the subject of a Detailed Site Investigation that was conducted in order to assess the nature and degree of on-site contamination associated with current and former uses of the property. Based on the findings of this assessment it was concluded that:

Proposed Development

Based on proposed development plans provided by the client (Ref. Rothelowman, Project No. 218004, dated 14 September 2018), it is understood that the site covers an area of approximately 3,144 m2, is currently occupied by commercial / industrial buildings and car parking at grade. Based on preliminary plans, El understands that the proposed development involves the demolition of the existing site structures and construction of a multi-level apartment building with five podium levels and four levels of basement car parking. No deep soil planting is proposed.

Desktop Study

- As shown in Figure 1, the site is located the main business district of Liverpool and is situated within the Local Government Area of Liverpool City Council. The land parcel covers a total area of approximately 3,144 m², as depicted in the site plan presented as Figure 2;
- Site land title records indicated that the site had be owned by Peter Warren (Properties) Pty Ltd (motor trader) since 1967 to 2015;
- Historic aerial photography showed that from the 1930s the surrounding land use consisted of
 predominantly residential developments, with the site bound on the north by Elizabeth Street.
 From the 1960s increased commercialisation along Elizabeth Street occurred until the 1990s,
 from which point the surrounding area remained relatively unchanged until the present day;
- Site history records held by Liverpool City Council were not available at the time of this assessment;
- SafeWork searches were completed for the site located at 26 Elizabeth Street, Liverpool NSW and no records pertaining to the site were held.
- EPA Notified / Listed / POEO:

There are no sites with any regulatory notices, listed as contaminated or on the POEO Public Register issued by the EPA within 500 m of the site.

Intrusive Investigations

- The sub-surface layers comprised anthropogenic filling overlying natural clays;
- Groundwater inflow was encountered at 4.8 mBGL in BH1M, 8.3 mBGL in BH2M, 6.1 mBGL in BH8M. Standing Water Levels (SWLs) collected during the Groundwater Monitoring Event (GME) were reported at 3.25 mBGL, 2.99 mBGL, 3.23 mBGL;
- Groundwater flow direction was indicated to the south-west based on monitoring of the installed wells;

- Results of soil samples collected from soil test boreholes indicated the following:
 - Concentrations of asbestos were detected within fill sample BH2M 0.2-0.3;
- Results of Groundwater samples collected from groundwater wells indicated the following:
 - Chromium, copper, nickel and zinc exceeded the ANZECC / ARMCANZ (2000) Marine Water criteria;
- Previously known data gaps, as outlined in the CSM (**Section 4**), have largely been addressed; however, the following data gaps remain and require closure by additional investigation:
 - Presence of hazardous building materials used in construction of site structures;
 - Investigation of the concrete patched area at the rear portion of the service centre; and
 - Soil sampling areas which were inaccessible due to existing buildings / infrastructure.

Conclusions

Based on the findings from this DSI conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (Section 12), EI conclude localised soil contamination was observed and will require remediation. A number of data gaps exist that will require further investigation (post-demolition of existing structures to enable access).

Based on EI's experience, heavy metals concentration exceeding water quality criteria are ubiquitous in groundwater systems in long-standing urban/industrial environments such as Liverpool. Whether these results are treated as exceedances of criteria, or representative of urban background groundwater conditions, the identified groundwater concentrations are not considered to represent a cause for environmental concern.

In view of the proposed development scope, and currently available information, EI consider that the contamination identified can be remediated to render the site suitable for the proposed land use, provided recommendations detailed in Section 11 are implemented.

El note that the site contamination issues can be managed through the development application process in accordance with the State Environmental Planning Policy 55 (SEPP 55) – Remediation of Land, with the requirements for remediation and validation incorporated into conditions of development consent.

Recommendations

Based on the findings of this DSI, the following recommendations will be required to be implemented before the site can be confirmed as suitable for the proposed development:

• A Hazardous Materials Survey should be completed by a suitably qualified and experienced consultant, before commencement of demolition works, to identify any hazardous materials present within the building structure. All identified hazardous materials must be appropriately managed and to maintain worker health and safety during site construction works;

- Preparation of a remedial action plan (RAP) that outlines:
 - i. Supplementary investigations:
 - a. Further soil investigation to assess inaccessible soils and risk to construction phase and future site users including investigation of the concrete patched area at the rear portion of the service centre.
 - b. Further soil sampling to aid in classification of fill for disposal purposes.
 - ii. Development of suitable remediation options for identified impacted fill (asbestos) and other excess soil by excavation and disposal or other appropriate method.
 - iii. Document waste classification assessment of soil earmarked for any excavation that may occur including piling waste, backfill material from excavations at the site, in accordance with the EPA (2014) *Waste Classification Guidelines*;
 - iv. Document preliminary environmental management consideration and a preliminary validation sampling and quality plan.
- Implementation of the RAP, and
- Preparation of a final site validation report by a suitably qualified environmental consultant, certifying site suitability of soils and groundwater for the proposed land use.

CONTENTS

EXE	ECUTIVE SUMMARY	
1.	INTRODUCTION	1
••	1.1 BACKGROUND AND PURPOSE	1
	1.2 PROPOSED DEVELOPMENT	1
	1.3 REGULATORY FRAMEWORK	1
	1.4 PROJECT OBJECTIVES	2
	1.5 SCOPE OF WORKS	2
2.	SITE DESCRIPTION	4
	2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING	4
	2.2 SURROUNDING LAND USE	4
	2.3 REGIONAL SETTING	5
	2.4 GROUNDWATER BORE RECORDS AND GROUNDWATER USE	6
	2.5 SITE WALKOVER INSPECTION	6
3.	SITE HISTORY AND SEARCHES	7
	3.1 SITE LAND TITLES INFORMATION / HISTORIC AERIAL REVIEW	7
	3.2 HISTORICAL AERIAL REVIEW	ç
	3.3 SURROUNDING LANDS HISTORICAL AERIAL PHOTOGRAPHY REVIEW	ç
	3.4 COUNCIL INFORMATION	10
	3.5 SAFEWORK NSW RECORDS SEARCH	10
	3.6 EPA ONLINE RECORDS	10
4.	CONCEPTUAL SITE MODEL	12
	4.1 POTENTIAL CONTAMINATION SOURCES	12
	4.2 CONTAMINANTS OF POTENTIAL CONCERN	12
	4.3 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS	12
	4.4 DATA GAPS	14
5.	SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)	15
	5.1 DATA QUALITY OBJECTIVES (DQO)	15
	5.2 DATA QUALITY INDICATORS	20
6.	ASSESSMENT METHODOLOGY	21
	6.1 SAMPLING RATIONALE	21
	6.2 Investigation Constraints	21
	6.3 ASSESSMENT CRITERIA	21
	6.4 SOIL INVESTIGATION	23
	6.5 GROUNDWATER INVESTIGATION	24
7.	DATA QUALITY ASSESSMENT	27
	7.1 QUALITY OVERVIEW	28
8.	RESULTS	29
	8.1 SOIL INVESTIGATION RESULTS	29
	8.2 GROUNDWATER INVESTIGATION RESULTS	29
	8.3 LABORATORY ANALYTICAL RESULTS	31
9.	SITE CHARACTERISATION	34
	9.1 REVIEW OF CONCEPTUAL SITE MODEL	34
	9.2 SOIL CHARACTERISATION	34
	9.3 Groundwater	34
10.	CONCLUSIONS	35
11.	RECOMMENDATIONS	37
12.	STATEMENT OF LIMITATIONS	38

REFERENCES

ABBREVIATIONS

TABLES (In Text)

TABLE 2-1	SITE IDENTIFICATION, LOCATION AND ZONING	4
TABLE 2-2	SURROUNDING LAND USES	5
TABLE 2-3	REGIONAL SETTING INFORMATION	5
TABLE 3-1	SUMMARY OF SITE OWNERS	7
TABLE 3-2	SUMMARY OF HISTORICAL AERIAL PHOTOGRAPHY	9
TABLE 3-3	SUMMARY OF AERIAL PHOTOGRAPH REVIEW	10
TABLE 4-1	CONCEPTUAL SITE MODEL	13
TABLE 5-1	SUMMARY OF PROJECT DATA QUALITY OBJECTIVES	16
TABLE 5-2	DATA QUALITY INDICATORS	20
TABLE 6-1	ADOPTED INVESTIGATION LEVELS FOR SOIL AND GROUNDWATER	22
TABLE 6-2	SUMMARY OF SOIL INVESTIGATION METHODOLOGY	23
TABLE 6-3	SUMMARY OF GROUNDWATER INVESTIGATION METHODOLOGY	24
TABLE 7-1	QUALITY CONTROL PROCESS	27
TABLE 8-1	GENERALISED SUBSURFACE PROFILE	29
TABLE 8-2	MONITORING WELL CONSTRUCTION DETAILS (INSTALLED 22/02/18)	30
TABLE 8-3	GROUNDWATER FIELD DATA	30
TABLE 8-4	SUMMARY OF SOIL ANALYTICAL RESULTS	31
TABLE 8-5	SUMMARY OF GROUNDWATER ANALYTICAL RESULTS	33

TABLES

TABLE T1 SUMMARY OF SOIL INVESTIGATION RESULTS

TABLE T2 SUMMARY OF GROUNDWATER INVESTIGATION RESULTS

FIGURES

- FIGURE 1 LOCALITY PLAN
- FIGURE 2 SAMPLING LOCATION PLAN

APPENDICES

APPENDIX A PROPOSED DEVELOPMENT PLANS APPENDIX B NSW OFFICE OF WATER GROUNDWATER BORE SEARCH APPENDIX C SITE PHOTOGRAPHS APPENDIX D HISTORICAL PROPERTY TITLES SEARCH APPENDIX E SAFEWORK NSW DANGEROUS GOODS SEARCH APPENDIX F BOREHOLE LOGS APPENDIX G FIELD DATA SHEETS APPENDIX H CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS APPENDIX I LABORATORY ANALYTICAL REPORTS APPENDIX J QA/QC ASSESSMENT APPENDIX K LABORATORY QA/QC POLICIES AND DQOS

1. INTRODUCTION

1.1 BACKGROUND AND PURPOSE

Binah Development Pty Ltd engaged El Australia (El) to conduct a Detailed Site Investigation for site characterisation purposes at the site located at 26 Elizabeth Street, Liverpool NSW ('the site').

As shown in **Figure 1**, the site is located approximately 27 km south-west of the Sydney Central Business District (CBD) and is situated within the Local Government Area of Liverpool City Council. The land parcel covers a total area of approximately 3,144 m², as depicted in the site plan presented as **Figure 2**.

This assessment was conducted to support a Development Application (DA) to the Liverpool City Council for the redevelopment of the site and for the purpose of enabling the developer to meet their obligations under the *Contaminated Land Management Act 1997* (CLM Act), for the assessment and management of contaminated soil and/or groundwater.

1.2 PROPOSED DEVELOPMENT

Based on proposed development plans (**Appendix A**) provided by the client (Ref. Rothelowman, Project No. 218004, dated 14 September 2018), it is understood that the site covers an area of approximately 3,144 m², is currently occupied by commercial / industrial buildings and car parking at grade. Based on preliminary plans, El understands that the proposed development involves the demolition of the existing site structures and construction of a multi-level apartment building with five podium levels and four levels of basement car parking. No deep soil planting is proposed.

1.3 REGULATORY FRAMEWORK

The following regulatory framework and guidelines were considered during the preparation of this report:

- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- Liverpool Local Environmental Plan, 2008;
- Liverpool Development Control Plan, 2008;
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- EPA (1995) Sampling Design Guidelines;
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd Edition);
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater,
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation;
- Contaminated Land Management Act 1997;
- State Environment Protection Policy 55 (SEPP 55) Remediation of Land, and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.4 PROJECT OBJECTIVES

The primary objectives of this investigation were to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources;
- To investigate the degree of any potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants; and
- Where site contamination is confirmed, make recommendations for the appropriate management of any contaminated soils and/or groundwater.

1.5 SCOPE OF WORKS

In accordance with EI fee proposal P15422.1 (dated 5 April 2018), to achieve the above objectives, the following scope of works was adopted:

1.5.1 Desktop Study

- A review of relevant topographical, geological, hydrogeological and soil landscape maps for the project area;
- A review of all previous environmental reports;
- Search of historical aerial photographs archived at NSW Land and Property Information in order to review previous site use and the historical sequence of land development in the neighbouring area;
- Search of NSW WorkCover (SafeWork NSW) records for information relating to possible underground tank approvals and locations, and other potential dangerous goods;
- Site history survey involving a detailed search of council records for information relating to operational site history and/or relevant environmental incidents;
- A land titles search, also conducted through NSW Land and Property Information for information relating to site ownership; and
- A search through the NSW EPA Land Information records to confirm that there are no statutory notices current on the site under the *Contaminated Land Management Act 1997* or *Protection of the Environment Operations Act 1997*.

1.5.2 Field Work & Laboratory Analysis

- Preparation of a Work Health, Environment and Safety Plan (WHSEP);
- A review of existing underground services on site;
- A detailed site walkover inspection;
- Drilling of boreholes at nine (9) locations distributed across accessible areas of the site;
- Installation of three (3) groundwater monitoring wells to a maximum depth of 12 mBGL (or prior refusal), constructed to standard environmental protocols to investigate potential groundwater contamination;

- Multiple level soil sampling within fill and natural soils and three groundwater samples from the constructed groundwater monitoring well; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation programme.

1.5.3 Data Analysis and Reporting

A DSI report would also be prepared to document desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. The report would also provide a record of observations made during the detailed site walkover inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

This report was generally done in accordance with the Guidelines on Consultant Reporting on Contaminated Sites (OEH, 2011).

2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Attribute	Description
Street Address	26 Elizabeth Street, Liverpool NSW
Location Description	The site is located in the main business are of Liverpool, bounded by Elizabeth Street (north), governmental properties (south), a car parking (east) and a car parking (west).
Site Coordinates	North east corner of the site (GDA94-MGA56):
	Easting: 308328.476
	Northing: 6244709.722
	(Source: <u>http://maps.six.nsw.gov.au</u>).
Site Area	3,144 m ²
	(Ref. mpa. Drawing title. SK01; drawing no. AP01; project. Proposed subdivision plan)
Lot and Deposited Plan (DP)	Lot 1 in DP 217460; Lot 10 in DP 621840
State Survey Marks	The Survey Mark in closest proximity to the site is SS3941D located approximately 56 m from the north east corner of the site, on the corner of Elizabeth Street and Bigge Street.
	(Source: http://maps.six.nsw.gov.au).
Local Government Authority	Liverpool City Council
Parish	St. Luke
County	Cumberland
Current Zoning	B2 – Local centre
-	(Liverpool Local Environmental Plan, 2008)
Current Land Uses	26 Elizabeth Street, Liverpool NSW – commercial / industrial buildings As shown in Figure 2 .

 Table 2-1
 Site Identification, Location and Zoning

2.2 SURROUNDING LAND USE

The site is situated within an area of local centre with commercial and industrial uses. Current uses of surrounding land are described in **Table 2-2**.

Page |4

Table 2-2 Surrounding Land Uses

Direction	Land Use Description	Sensitive Receptors (& distance from site)
North	The northern boundary is occupied by Elizabeth Street.	All Saints' Catholic Church Liverpool (approx. 80 m).
South	The southern boundary is occupied by Liverpool Court House.	Adjacent residential properties.
East	Waines Crescent followed by Bigge Street.	Bigge Park (approx. 120 m).
West	The George Street, followed by commercial properties.	Sumer Child Care (approx. 330 m).

2.3 REGIONAL SETTING

Regional topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Attribute	Description
Ground Topography	The site slopes gently to the north, from approximate RL 12.85 mAHD at the north- east corner to approximate RL 13.10 mAHD at the south-east corner.
	(Ref. Project surveyors, 2018. Job Ref. D4118, dated 26 March 2018).
Site Drainage	As large areas of the site are concrete driveway, stormwater is expected to drain to the north to the council stormwater system.
Regional Geology	With reference to the 1:100 000 scale Geological Series Sheet 9030 (Penrith) the site is likely to be underlain by Bringelly Shale (Rwb). Bringelly Shale is described as <i>carbonaceous claystone, claystone, laminite, fine to medium-grained lithic sandstone, rare coal and tuff.</i>
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 1989) indicates that the site overlies a Residual Landscape – Blacktown, which typically includes gently undulating rises on Wianamatta Group shales.
Acid Sulfate Soil Risk (also see separate report)	With reference to the 1:25 000 scale, Liverpool Acid Sulfate Soil (ASS) Risk Map (Murphy, 1997), the subject land lies within the map class description of ' <i>no known occurrence</i> .' As the site is underlain by Bringelly Shale, ASS is not expected to be present.
	The Liverpool Local Environmental Plan (2008) Acid Sulfate Soils Map (Sheet ASS_011 shows the site to be within areas mapped as <i>Class 5</i> Acid Sulfate Soils (ASS). Class 5 areas are likely to locate ASS during works within 500 metres of adjacent Class 1, which are likely to lower the water table below 1 metre AHD on adjacent Class 1 land.
	Given that the proposed development is within 500 m from Class 1 land, ASS are likely to be encountered during the works and an ASS Assessment is required.
Likelihood & Depth of Filling	Based on observations during the intrusive investigations, the maximum fill depth noted to occur on site was approximately 0.7 mBGL.

 Table 2-3
 Regional Setting Information

Attribute	Description
Typical Soil Profile	Thin surficial clayey fill overlying weathered shale.
	Anthropogenic fill;
	Residual soil; and
	Natural Shale bedrock.
Depth to Groundwater	Groundwater inflow was encountered at 4.8 mBGL in BH1M, 6.1 mBGL in BH8M and 8.3 mBGL in BH2M.
	Onsite groundwater conditions, including groundwater flow direction, are discussed in Section 9.2 .
Nearest Surface Water Feature	Georges River, located approximately 420 m south east of the site. The river flows in a west to east direction into Botany Bay.
	The Georges River is tidal to Liverpool Weir and is considered to be a marine receptor for assessment purposes.
Anticipated Groundwater Flow Direction	Based on the local topography and the nearest surface water feature, groundwater flow direction is anticipated to be south-easterly towards Georges River located approximately 420 m south-east of the site.

2.4 GROUNDWATER BORE RECORDS AND GROUNDWATER USE

An online search of registered groundwater bores was conducted by EI on 21 May 2018 through the NSW Office of Water (Ref. http://allwaterdata.water.nsw.gov.au/water.stm), which records relevant information pertaining to licensed water bores for the state of New South Wales. The search did not identify any registered bores within 500 m of the site, as illustrated in the registered bore location plan attached in **Appendix B**.

2.5 SITE WALKOVER INSPECTION

Site observations were recorded during a site walkover inspection on 20 April 2018. A summary of site observations is detailed below and site photographs taken during the inspection are present in **Appendix C**.

- The site was occupied by a car service centre and a car parking (Warren Toyota), with the adjacent area mainly concrete paved hardstand;
- The western portion of the site was occupied by a service centre, and a concrete patched area was found at the rear portion of the warehouse (see **Photo C1**). The concrete feature was approximately 2m x 2m in size. UST vent pipes or bowser plinths were not observed during the walkover;
- Various building wastes and unwanted materials from building works were piled on the eastern boundary of the service centre (see **Photo C6**);
- Potential lead paint and asbestos contain materials (ACM) were observed around the service centre (see **Photo C5**); and
- Broken sheets of potential covered bonded ACM were observed inside the building adjacent to the carpark (see **Photo C2**).

3. SITE HISTORY AND SEARCHES

3.1 SITE LAND TITLES INFORMATION / HISTORIC AERIAL REVIEW

A historical land titles search was conducted through Infotrack Pty Ltd. Copies of relevant documents resulting from this search are presented in **Appendix D**. A summary of all the previous and current registered proprietors along with information obtained from the available historical aerial photographs, in relation to past potential land uses are **Table 3-1**.

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)	
Lot 1 in D.P. 217460 the part tinted yellow on the attached cadastre (refer to Appendix D)		
31.12.1910 (1910 to 1936)	Dacres Fitzherbert Evans (Bank Manager) & his deceased estate	
26.02.1936 (1936 to 1950)	Ernest Albert Groves (Builder Now Gentleman)	
19.06.1950 (1950 to 1962)	Marjorie Winifred Elkington (Married Woman)	
27.07.1962 (1962 to 1966)	Peter Howard Warren (Motor Trader)	
Lot 1 in D.P. 217460 the part tinted p	ink on the attached cadastre (refer to Appendix D)	
Documentary Title		
23.06.1915 (1915 to 1921)	Hannah Wadsworth (Married Woman)	
28.02.1921 (1921 to 1953)	Mary Whilimena Hammond (Married Woman) Also known as Mary Wilheimina Hammond	
10.08.1953 (1953 to 1953)	Henry Leabeater (Carpenter)	
13.11.1953	Giuseppi Amalfi (Farmer) & his deceased estate Angelo Amalfi (Farmer) Agostino Amalfi (Farmer) Salvatori Amalfi (Farmer) Alfredo Amalfi (Farmer)	
Purported Possessory Title		
1950? (1950 to 1963)	Marjorie Winifred Elkington (Married Woman)	
12.03.1963 (1963 to 1966)	Peter Howard Warren (Motor Trader)	

Table 3-1 Summary of Site Owners

Note: Was formerly part of a Reserved Lane 14 feet 6 Inches wide which was claimed by Possessory Application in Primary Application No. 43073 dated 10.05.1966

Continued as regards the whole of Lot 1 D.P. 217460

02.12.1966	
(1966 to 1976)	

Commercial & General Acceptance Limited

Date of Acquisition and term held	Registered Proprietor(s) & Occupations (where documented)
21.05.1976 (1976 to 2015)	Peter Warren (Properties) Pty. Limited
22.09.2015 (2015 to Date)	# Elizabeth Street Partnership Pty Ltd
Lot 10 in D.P. 621840 the part tinted	ourple on the attached cadastre (refer to Appendix D)
23.06.1915 (1915 to 1921)	Hannah Wadsworth (Married Woman)
28.02.1921 (1921 to 1953)	Mary Whilimena Hammond (Married Woman) Also known as
10.08.1953	Mary Wilheimina Hammond Henry Leabeater (Carpenter)
(1953 to 1953) 13.011.1953 (1953 to 1967)	Giuseppi Amalfi (Farmer) & his deceased estate Angelo Amalfi (Farmer) Agostino Amalfi (Farmer) Salvatori Amalfi (Farmer)
25.09.1967 (1967 to 2015)	Alfredo Amalfi (Farmer) Peter Warren (Properties) Pty. Limited
Lot 10 in D.P. 621840 the part tinted y	vellow on the attached cadastre (refer to Appendix D)
Documentary Title	
31.12.1910 (1910 to 1936)	Dacres Fitzherbert Evans (Bank Manager) & his deceased estate
26.02.1936 (1936 to 1950)	Ernest Albert Groves (Builder Now Gentleman)
19.06.1950 (1950 to 1962)	Marjorie Winifred Elkington (Married Woman)
27.07.1962	Peter Howard Warren (Motor Trader)
27.07.1962 Purported Possessory Title	Peter Howard Warren (Motor Trader)
Purported Possessory Title	Giuseppi Amalfi (Farmer) & his deceased estate Angelo Amalfi (Farmer) Agostino Amalfi (Farmer) Salvatori Amalfi (Farmer)
27.07.1962 Purported Possessory Title 1955? 25.09.1967 (1967 to 2015)	Giuseppi Amalfi (Farmer) & his deceased estate Angelo Amalfi (Farmer) Agostino Amalfi (Farmer)
Purported Possessory Title 1955? 25.09.1967 (1967 to 2015)	Giuseppi Amalfi (Farmer) & his deceased estate Angelo Amalfi (Farmer) Agostino Amalfi (Farmer) Salvatori Amalfi (Farmer) Alfredo Amalfi (Farmer)
Purported Possessory Title 1955? 25.09.1967 (1967 to 2015) Lot 10 in D.P. 621840 the part tinted of	Giuseppi Amalfi (Farmer) & his deceased estate Angelo Amalfi (Farmer) Agostino Amalfi (Farmer) Salvatori Amalfi (Farmer) Alfredo Amalfi (Farmer) Peter Warren (Properties) Pty. Limited Drange on the attached cadastre (refer to Appendix D) Lane 14 feet 6 Inches wide which was claimed by Possessory

22.09.2015 (2015 to Date)

Elizabeth Street Partnership Pty Ltd

Notes:

[#] Denotes Current Registered Proprietor

<u>Leases as regards the whole of Lot 1 D.P. 217460: -</u>
02.12.1966 (K570855) – Peter Howard Warren (Motor Trader) – expired 21.05.1976

Leases as regards the whole of Lot 10 D.P. 621840: - NIL Easements as regards the whole: - NIL

In summary, review of land titles records indicated that the site had be owned by Peter Warren (Properties) Pty. Limited (motor trader) since 1967 to 2015.

3.2 **HISTORICAL AERIAL REVIEW**

The historical aerial photographs reviewed as part of this DSI included:

- 1930: 10 February 1930, Map 3429, Run 24, B/W, Commonwealth of Australia;
- 1943: Six Maps (https://maps.six.nsw.gov.au/) 1943 Imagery NSW Department of Finance and Services
- 1951: May 1951, Map NSW 466-111, Run 16, B/W, NSW Lands Photo; ٠
- 1961: September 1961, Map NSW 1042-5133, Run 37W, B/W, NSW Lands Photo;
- 1986: 2 August 1986, Map NSW 3527 (98), Run 24E, NSW Lands Photo; •
- 1991: 14 August 1991, NSW 4029, Run 11, Surveyor General Department;
- 2002: 16 March 2002, Map 2302, NSW 4724, Run 11 Department of Lands; and
- 2016: 6 April 2016, Six Maps (https://maps.six.nsw.gov.au/) NSW Imagery NSW Department of Finance and Services.

Year	Site description based on historical aerial photographs
1930:	The site appears to be occupied by two dwelling houses and two sheds.
1943:	The land use appears relatively unchanged from the 1930 aerial photograph.
1951:	The land use appears relatively unchanged from the 1943 aerial photograph.
1961:	The land use appears relatively unchanged from the 1951 aerial photograph.
1986:	The western portion of site appears to be occupied by one commercial building. The eastern portion of site appears to be a car parking.
1991:	The land use appears relatively unchanged from the 1986 photograph.
2002:	The land use appears relatively unchanged from the 1991 photograph.
2016:	The land use appears relatively unchanged from the 2002 photograph

Table 3-2 Summary of Historical Aerial Photography

In summary, review historic aerial photography showed that from the site had been occupied by commercial building since at least the 1980s. The current day structure had been constructed sometime between 1961 and 1986.

3.3 SURROUNDING LANDS HISTORICAL AERIAL PHOTOGRAPHY REVIEW

As part of the Site Land Titles Information / Historic Aerial Review, an assessment of surrounding land uses using historical aerial photographs sourced from NSW Land and Property Information was carried out. A summary of the pertinent information identified at surrounding land parcels from the reviewed photographs is presented in Table 3-3.

Table 3-3 Summary of Aerial Photograph Review

Aerial Photograph	Surrounding land uses based on historical aerial photographs
1930	North : The surrounding land appears to be occupied by residential structures with multiple areas of vacant land.
	South: The surrounding land appears to be vacant land.
	East: The surrounding land appears to be occupied by residential structures with multiple areas of vacant land.
	West: The surrounding land appears to be occupied by residential structures with multiple areas of vacant land.
	Surrounding land was primarily occupied by what appears to be residential properties being bound to the north by The Elizabeth Street.
1943	Surrounding land use remained relatively unchanged since the 1930 aerial photograph.
1951	The surrounding land uses remained relatively unchanged from the 1943 aerial, with the exception of:
	North: Further dwelling development along north sides of Elizabeth Street.
1961	Surrounding land use remained relatively unchanged since the 1951 aerial photograph.
1986	North: Further commercial development along north side of Elizabeth Street.
	West: Further commercial development along west side of George Street.
	South: Further commercial development along south boundary of the site.
1991	Surrounding land use remained primarily unchanged since the 1986 aerial photograph.
2002	Surrounding land use remained primarily unchanged since the 1991 aerial photograph.
2016	Surrounding land use remained primarily unchanged since the 2002 aerial photograph.

In summary review of historic aerial photography showed from the 1930s the surrounding land use consisted of predominantly residential developments, with the site bound on the north by Elizabeth Street. From the 1960s increased commercialisation along Elizabeth Street occurred until the 1990s, from which point the surrounding area remained relatively unchanged until the present day.

3.4 COUNCIL INFORMATION

Site history records held by Liverpool City Council were not available at the time of this assessment. These records have been requested from Council and once received if there are any issues raised, this DSI report will be amended accordingly in the form of an addendum.

3.5 SAFEWORK NSW RECORDS SEARCH

A search of SafeWork NSW Authority records relating to the site was requested by EI. Correspondence dated 24 April 2018 from the Dangerous Goods Licensing Section (**Appendix E**), confirmed that a search of Stored Chemical Information Database (SCID) and the microfiche records held by SafeWork was conducted and revealed that no records pertaining to the site were held.

3.6 EPA ONLINE RECORDS

On 21 May 2018, an on-line search of the contaminated land public record of NSW Environment Protection Authority (EPA) Notices was conducted. This search confirmed that the NSW OEH had no regulatory involvement in relation to the area of investigation, or properties in proximity to the site. The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the Contaminated Land Management Act 1997 (CLM Act);
- Approved voluntary management proposals under the CLM Act that have not been fully carried out and where the approval of the EPA has not been revoked;
- Site Audit Statements provided to the EPA under Section 53B of the CLM Act that relate to significantly contaminated land;
- Where practicable, copies of any documentation formerly required to be part of the public record; and
- Actions taken by the EPA under Sections 35 and 36 of the *Environmentally Hazardous Chemicals Act 1985.*

A search through the List of NSW Contaminated Sites notified to the EPA under Section 60 of the CLM Act 1997 was also conducted on 21 May 2018. This list is maintained by NSW EPA and includes properties on which contamination has been identified. Not all notified land is deemed to be impacted significantly enough to warrant regulation by the EPA. The site was not notified as contaminated to the EPA, and no other notified or regulated sites are located within a 500 m of the site.

A search of the Protection of the Environment Operations (POEO) Act public register, regarding environmental protection licences, applications, notices, audits, pollution studies, and reduction programmes did not identify any sites with records within a 500 m proximity to the site.

In summary, the potential for contamination from offsite sources is considered low. No notified sites were identified as being within a 500 m up gradient proximity to the site, as such the site is deemed as having low potential for on-site migration of contamination.

4. CONCEPTUAL SITE MODEL

In accordance with NEPM (2013) *Schedule B2 – Guideline on Site Characterisation* and to aid in the assessment of data collection for the site, EI developed a preliminary conceptual site model (CSM) as part of this investigation to assess plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

4.1 SUBSURFACE CONDITIONS

The sub-surface layers were comprised of clay-dominated, filling materials (ranging in thickness from 0.2-0.55 m), overlying low to medium plasticity, silty clay (ranging in thickness from 4.5-7.5 m), overlaying weathered shales.

4.2 POTENTIAL CONTAMINATION SOURCES

On the basis of the findings of the current investigation, potential contamination sources are as follows:

- Unknown type and concentration of contaminants within any anthropogenic fill imported to the site for levelling or other purpose;
- Weathering of building structures (i.e. painted surfaces, metallic structures, cement-fibre sheeting, etc.);
- Historic and current commercial use of the site (including, service centre, motor trader);
- Possible impacts from historic use of pesticides beneath site structures;
- Spills and leaks from parked vehicles;
- Storage of hazardous chemicals, including potential USTs;
- Hazardous materials, including ACM from building products used onsite.

4.3 CONTAMINANTS OF POTENTIAL CONCERN

Based on the findings of the current investigation, the potential contaminants at the site are considered to be:

- **Soil** heavy metals (HM), total recoverable hydrocarbons (TRH), the monocyclic aromatic hydrocarbon compounds *benzene, toluene, ethyl-benzene* and *xylenes* (BTEX), polycyclic aromatic hydrocarbons (PAH), organochlorine and organophosphorus pesticides (OCP/ OPP), polychlorinated biphenyls (PCB) and asbestos.
- Groundwater HM, TRH, BTEX, PAH and Volatile Organic Compounds (VOCs) and Phenols.

4.4 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in **Table 4-1**.

Table 4-1 Conceptual Site Model

Site Area	Subsurfa ce Profile	Potential Sources	Potential Contaminants	Media	Sensitive Receptor	Migration & Exposure Pathways
Entire site	Fill overlying natural CLAY	Fill soils of unknown origin, impacts from previous commercial/ industrial activities (including metal sheeting workshop), potential residues from pesticide use, weathering of building structures and spills from parked vehicles.	HM, TRH, BTEX, PAH, OCP/ OPP, VOC, PCB and asbestos.	Soils/Bedrock Groundwater Air/Soil Vapour LNAPL/DNAPL (if present)	Georges River Construction / maintenance workers Future site occupants Offsite residents and commercial works	Dermal Contact. Ingestion. Inhalation. Seepage into the subsurface soils, bedrock and groundwater Erosion of soils following removal of any concrete.
Hazardous Materials storage areas including potential USTs	Fill overlying natural CLAY	Storage of hazardous chemicals	HM, TRH, BTEX, PAH, OCP/ OPP, VOC, PCB and asbestos.	Soils/Bedrock Groundwater Air/Soil Vapour LNAPL/DNAPL (if present)	Georges River Construction / maintenance workers Future site occupants Offsite residents and commercial works	Dermal Contact. Ingestion. Inhalation. Seepage into the subsurface soils, bedrock and groundwater. Erosion of soils following removal of any concrete.
Building Structure	Fill overlying natural CLAY	Potential hazardous building materials	Heavy metals, PCBs, asbestos	Hazardous materials (i.e paint and asbestos)	Construction / maintenance workers Offsite residents and commercial works	Inhalation and dermal.

Based on information from the site walkover inspection and site history review, a program of intrusive sampling and analysis was warranted, to complement the updated history. The field investigation component is to target locations of potential sources of contamination (as listed in Section 4.1) and complement the previous site investigation by ultimately providing a systematic assessment of the site.

5. SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)

The SAQP ensures that the data collected during this investigation is representative, and provide a robust basis for site assessment decisions. This SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the ESA;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

5.1 DATA QUALITY OBJECTIVES (DQO)

In accordance with the USEPA (2006) *Data Quality Assessment* and the EPA (2017) *Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in **Table 5-1**.

Table 5-1 Summary of Project Data Quality Objectives

DQO Steps	Details	Comments (changes during investigation)
1. State the Problem Summarise the contamination problem that will require new environmental data, and dentify the resources available to resolve the problem; develop a conceptual site model	The former commercial site located at 26 Elizabeth Street, Liverpool NSW is to be redeveloped for more sensitive land-use and requires a contamination assessment in accordance with SEPP 55. This investigation is required to characterise the condition of the site soil and groundwater and enable the developer to meet their obligations under the <i>Contaminated Land Management Act 1997</i> (CLM Act), for the assessment and management of contaminated soil and/or groundwater.	-
2. Identify the Goal of the Study (Identify the decisions) dentify the decisions that need to be made on the contamination problem and he new environmental data required to make them	 Based on the objectives outlined in Section 1.4, the decisions that need to be made are Has the nature, extent and source of any soil or groundwater impacts onsite been defined? What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified? Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? Does the collected data provide sufficient information to allow the suitability of the site to be determined, or selection and design of an appropriate remedial strategy, if necessary? If the data does not provide sufficient information, what data gaps require closure to enable the suitability of the site to be determined, or selection and design of an appropriate remedial strategy? 	

_

DQO Steps	Details	Comments (changes during investigation)
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements	 Inputs to the decision making process include: Proposed development plans and land use; Aerial photographs, historical Land Title records, SafeWork NSW records, and Council requirements; National and NSW EPA guidelines endorsed under the <i>NSW Contaminated Land Management Act 1997</i>; Soil and groundwater samples and observations obtained from an intrusive investigation in locations, and to depths deemed appropriate for investigative purposes (or prior auger refusal); Investigation sampling to verify the presence of onsite contamination and to evaluate the potential risks to sensitive receptors; and Laboratory analysis of selected soil and groundwater samples will comprise COPC presented in Section 4.2. At the end of the assessment, a decision must be made regarding whether the environmental conditions are suitable for the proposed redevelopment, or if additional investigations are required to confirm site suitability, or remedial works to make the site suitable for the proposed use. 	-
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	Lateral – The cadastral boundaries of the site; Vertical – From the existing ground level to at least the base of the proposed bulk excavation level at approximately 12m BGL and locally deeper required for footing and/or trench excavations for the slab, and to the depth of water-bearing zones; and Temporal – The results will be valid on the day samples are collected and will remain valid as long as no changes occur in regards to site use, and contamination (if present) does not migrate onto the site from off-site sources.	-

DQO Steps	Details	Comments (changes during investigation)
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a	Laboratory test results will be accepted if:	-
	 All contracted laboratories are accredited by NATA for the analyses undertaken; 	
	 All laboratory analytical data is within pre-determined data acceptance criteria, in accordance with laboratory quality assurance and quality control (QA/QC) policies and DQOs; 	
	QA/QC results demonstrate acceptable reliability and representativeness of the data set; and	
	 Laboratory practical quantitation limits (PQL) are below the adopted acceptance/assessment criteria for the tested chemical of concern. 	
logical basis for choosing from alternative actions	The decision rules for the investigation were:	
	 If the concentrations of contaminants in the soil data exceed the relevant health-based investigation criteria, the health screening criteria and ecological criteria where accessible soils would be used for the intended land use; then assess the need to further investigate the extent of impacts onsite. 	
	• Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 6-2 .	
6. Specify Performance or Acceptance Criteria (Specify limits on decision	Specific limits for this project are to be in accordance with the National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This should include the following points to quantify tolerable limits:	-
errors) Specify the decision-maker's	 The null hypothesis for the investigation is that the 95% Upper Confidence Limits (UCL) of the mean for contaminants of concern exceed relevant commercial / industrial land use criteria across the site. 	
acceptable limits on decision	The acceptance of the site will be based on the probability that:	
errors, which are used to establish performance goals for limiting uncertainties in the data	 The 95% UCL of the mean of the data will satisfy the given site criteria. Therefore, a limit on the decision error will be 5% that a conclusive statement may be incorrect; 	
	 The standard deviation of the results is less than 50% of the relevant remediation acceptance criterion; and 	
	 No single results exceed the remediation acceptance criteria by 250% or more. 	
	 Soil concentrations for chemicals of concern that are below investigation criteria made or approved by the NSW EPA will be treated as acceptable and indicative of suitability for the proposed land use(s). 	
	 If contaminant concentrations in soil and/or groundwater exceed the adopted criteria, further investigation will be will be considered prudent. If no contamination is detected in soil and/or groundwater, no further action is required. 	

DQO Steps	Details	Comments (changes during investigation)
7. Develop the Detailed Plan for Obtaining Data	In order to identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs:	-
(Optimise the design for obtaining data)	 Nine (9) sampling locations were proposed for the site using a systematic and targeted sampling pattern across accessible areas of the site. 	
Identify the most resource- effective sampling and	 Three groundwater wells were proposed to be installed at the site. 	
analysis design for general data that are expected to satisfy the DQOs	 An upper soil profile sample will be collected at each borehole location and tested for chemicals of concern, to assess the conditions of the fill layer, and impacts from commercial and industrial activities at ground level. Further sampling would also be carried out at deeper soil layers. Samples will be selected based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples) whilst giving consideration to characterise the subsurface soil stratigraphy. 	
	 Written instructions will be issued to guide field personnel in the required fieldwork activities; 	
	 Field screening for potential VOC contamination was not carried out with a portable Photo-Ionisation Detector (PID); 	
	 Representative soil samples will be collected from the site and analysed to allow characterisation of soils; and 	
	 Review of the results will be undertaken to determine if further excavation and additional sampling is warranted. Additional investigations would be considered to be warranted where soil concentrations are found to exceed remediation criteria endorsed by the NSW EPA, relevant to the proposed land use(s). 	

5.2 DATA QUALITY INDICATORS

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 5-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 7**.

Data Quality Objective	Data Quality Indicator	Acceptable Range
Accuracy	Field – Trip blank (laboratory prepared) Laboratory – Laboratory control spike and matrix spike	< laboratory limit of reporting (LOR)
		Prescribed by the laboratories
Precision	Field – Blind replicate and spilt duplicate	< 30 % relative percentage
	Laboratory – Laboratory duplicate and matrix spike	difference (RPD [%])
	duplicate	Prescribed by the laboratories
Representativeness	Field – Trip blank (laboratory prepared)	< laboratory limit of reporting
	Laboratory – Method blank	(LOR)
		Prescribed by the laboratories
Completeness	Completion (%)	-

Table 5-2 Data Quality Indicators	Table 5-2	Data Quality	Indicators
-----------------------------------	-----------	--------------	------------

6. ASSESSMENT METHODOLOGY

6.1 SAMPLING RATIONALE

With reference to the preliminary CSM described in **Section 5**, soil and groundwater investigation works were planned in accordance with the following rationale:

- Sampling fill and natural soils from nine test bore locations located systematically across the site using a grid-based sampling pattern to characterise in-situ soils;
- Installation of three (3) groundwater monitoring wells and sampling groundwater during a single groundwater monitoring event (GME) at the monitoring well to assess for potential groundwater impacts; and
- Laboratory analysis of representative soil and groundwater samples for the identified contaminants of concern.

6.2 INVESTIGATION CONSTRAINTS

Natural soil sampling at BH4 and BH7 during the investigation could not be achieved due to buried impenetrable materials (i.e. concrete slab and bricks), which caused auger refusal. Installation of groundwater monitoring wells at BH1M, BH2M and BH8M during the investigation could not be achieved to target depth (12 m) due to hard bedrock, which caused auger refusal.

6.3 ASSESSMENT CRITERIA

The assessment criteria proposed for this project are outlined in **Table 6-1**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM, 2013 Soil HILs, , HSLs, & Management Limits for TPHs	Soil Health-based Investigation Levels (HILs) Basement and building footprint: NEPM (2013) HIL-B for residential settings with limited soils access. Soil Health-based Screening Levels (HSLs) Basement and building footprint: NEPM (2013) HSL-A&B for low-high density residential. - EI note that HSL-D for vapour intrusion in accordance with NEPM (2013) Table 1A(3) Note (1) can used for assessment purposes were basements underlie ground floor or first floor residential dwellings.
		Asbestos HSLs WADOH (2009) assessment criteria, as presented in NEPM (2013), were not adopted during this investigation. Presence / absence of asbestos (not-detected) were utilised for preliminary screening purposes. Management Limits for Petroleum Hydrocarbons Should the HSLs be exceeded for petroleum hydrocarbons, soil samples from BH2, BH3 & BH5 would also assessed against the NEPM 2013
		Management Limits for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.
Groundwater	NEPM, 2013 GILs for Marine Waters ANZECC 2000 Trigger Values	Groundwater Investigation Levels (GILs) for Marine Water NEPM 2013 provides GILs for marine water aquatic ecosystems, which are based on the ANZECC & ARMCANZ 2000 Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals <i>cadmium</i> and <i>mercury</i> . The marine criteria were considered relevant as the closest, potential surface water receptor was Georges River approximately 440 m south-east of the site. Due to the ANZECC (2000) criteria for petroleum hydrocarbons being below the laboratory limit of reporting, the PQL for each TRH fraction was adopted as the GIL for aquatic ecosystems, as per the guidance provided in DEC (2007) <i>Guidelines for the Assessment and Management of</i> <i>Groundwater Contamination</i> .
	NEPM, 2013 Groundwater HSLs for Vapour Intrusion	Health-based Screening Levels (HSLs) The NEPM 2013 groundwater HSLs for vapour intrusion were used to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. The <i>HSL A</i> and <i>HSL B</i> thresholds for low and medium-density residential sites were applied for groundwater as a conservative approach.
	NEPM, 2013 GILs for Drinking purposes	Drinking Water GILs The NEPM (2013) GILs for drinking water quality were adopted relating to direct contact/ingestion of groundwater with consideration to construction workers during development, basement users and any unregistered groundwater wells. These were based on the Australian Drinking Water Guidelines (Ref. NHMRC, 2011).

Table 6-1	Adopted Investigation Levels for Soil and Groundwater
-----------	---

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 8**.

6.4 SOIL INVESTIGATION

The soil investigation works conducted at the site are described in **Table 6-2**. Test bore locations are illustrated in **Figure 2**.

Activity/Item	Details
Fieldwork	The site soil intrusive investigations were conducted on 20 April 2018 (BH1M to BH9).
Drilling Method & Investigation Depth	Test bores were drilled using a Hanjin solid flight auger drill rig. Borehole and monitoring well construction is presented in the detailed logs attached in Appendix F . The final borehole depths ranged between 0.3m to 9.8m BGL. Natural soil sampling at BH4 and BH7 during the investigation could not be achieved due to buried impenetrable materials (i.e. concrete slab and bricks), which caused auger refusal.
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix F .
Field Observations	A summary of field observations is provided, as follows:
(including visual and olfactory signs of	 Angular to sub-angular gravels were reported within the fill material;
potential contamination)	 No unusual odours were reported within the soil samples collected from across the site;
	 Fibre cement sheet fragments were not observed in drilling cuttings; and
	 Evidence of ash or slag materials was not observed in drilling cuttings for boreholes.
Soil Sampling	 Soil samples were collected using a dry grab method (unused, dedicated nitrile gloves) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars.
	 Blind field duplicates were separated from the primary samples and placed into glass jars.
	 A small amount of duplicate was separated from all fill samples and placed into a zip-lock bag for asbestos analysis.
Decontamination Procedures	<i>Drilling Equipment</i> - The drilling rods were decontaminated between sampling locations with potable water until the augers were free of all residual materials.
	Sampling Equipment – Sampling tools were decontaminated between sampling locations with a solution of potable water and Decon 90 followed by rinsing with potable water.
Sample Preservation	Samples were stored in a refrigerated (ice-filled) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.

Table 6-2 Summary of Soil Investigation M	Methodology
---	-------------

Activity/Item	Details
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 9 .
Soil Vapour Screening	Field screening for potential VOCs collected in soil headspace samples was conducted using a PID fitted with a 10.6 eV lamp.

6.5 GROUNDWATER INVESTIGATION

The groundwater investigation works conducted at the site are described in **Table 6-3**. Monitoring well locations are illustrated in **Figure 2**.

Activity/Item	Details
Fieldwork	Groundwater monitoring wells were installed and developed on the 20 April 2018. Water level gauging, well purging, field testing and groundwater sampling was conducted on 2 May 2018.
Well Construction	Three on-site down-gradient test bores (BH1M BH2M and BH8M) were extended to the maximum depth of 9.8 mBGL and converted to groundwater monitoring well. Installation of groundwater monitoring wells at BH1M, BH2M and BH8M during the investigation could not be achieved to target depth (12 m) due to hard bedrock, which caused auger refusal. The borehole for the monitoring well was drilled using a Hanjin solid flight auger drill rig. Well construction details are tabulated in Table 8-2 and documented in the bore logs presented in Appendix F . The well installed by EI screened the water table inflow recorded during drilling within the residual soil profile.
	Well construction was in general accordance with the standards described in NUDLC, 2012 and involved the following:
	 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product, if present;
	 Base and top of each well was sealed with a uPVC cap;
	 Annular, graded sand filter was used to approximately 300mm above top of screen interval;
	 granular bentonite was applied above annular filter to seal the screened interval;
	 Drill cuttings were used to backfill the bore annulus to just below ground level; and
	• Surface completion comprised a steel road box cover set in neat cement and finished flush with the concrete slab level.
Well Development	Well development was conducted for each well directly following installation. This involved agitation within the full length of the water column using a dedicated, HDPE, disposable bailer, followed by removal of water and accumulated sediment.
	Well development was considered successful upon purging three times the well volume or until dry.
Well Survey (Elevation and	Well elevation has been estimated from the survey plan provided by the Client.
(Elevation and location)	(Ref. Project surveyors, 2018. Job Ref. D4118, dated 26 March 2018).
,	Construction of test boreholes at 9 locations distributed in a triangular grid pattern across accessible areas of the site.

Table 6-3	Summary of Groundwater	Investigation Methodology
-----------	------------------------	---------------------------

Activity/Item	Details	
Well Gauging	Monitoring wells BH1M, BH2M, and BH8M was gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 2 May 2018. Measured SWL is shown in Table 8-2 . The gauging was conducted with a water level meter probe.	
	A transparent HDPE bailer was used to visually assess for the presence PSH prior to the commencement of well purging.	
Well Purging & Field Testing	The groundwater monitoring well was purged and sampled using low-flow/minimal draw- down sampling method with a MicroPurge kit (MP15) and a portable MicroPurge pump following well gauging.	
	The MicroPurge system incorporates a low density poly-ethylene (LDPE) pump bladder, and a Teflon-lined LDPE sample delivery tube. The system used for this investigation employed pressurised carbon dioxide gas to regulate groundwater flow. Pump pressure and pumping cycles were adjusted accordingly to regulate extraction flow rate, and to avoid causing excessive drawdown of water level during the sampling process.	
	Field measurement of water quality parameters was conducted continuously on purged groundwater with a water quality meter (Hanna Multi Parameter 9829) positioned within an open flow-through cell. Groundwater parameters tested in the field were Dissolved Oxyger (DO), Electrical Conductivity (EC), Redox, Temperature and pH. The measured parameters were recorded onto a field data sheet (Appendix G), along with the purged water volume at the time of measurement.	
	Groundwater sampling was performed when three consecutive readings of groundwater parameter indicated stabilisation; as per the specified ranges detailed below:	
	Electrical Conductivity: ± 3% of the read value;	
	• Redox: ± 20 mV;	
	• DO: ± 20% of the read value;	
	• pH: ± 0.2 pH unit; and	
	• Temperature: ± 0.2°C	
	Total water volume purged and stabilised groundwater parameters are summarised in Table 9-3.	
Decontamination Procedure	 The water level probe, water quality kit probes, MicroPurge and HDPE bailers were washed in a solution of potable water and Decon 90 and then rinsed with potable water. 	
	 All sample containers were supplied by the laboratory for the particular project and only opened once immediately prior to sampling. 	
	 While ice was used to keep the samples cool, all melt water was continuously drained from the Esky to prevent cross-contamination of samples. 	
Sample Preservation	The following sample containers supplied by the laboratory were used to store groundwater samples:	
	 One, amber glass, acid-washed and solvent-rinsed bottle; 	
	 Two, 40 ml amber glass vials, pre-preserved with dilute hydrochloric acid, Teflon- sealed; and 	
	 One, 250 mL, HDPE bottle, pre-preserved with dilute nitric acid (1 mL). 	
	Samples collected for heavy metal analysis were field-filtered using 0.45 µm pore-size filters. All containers were filled with sample to the brim then capped and stored in ice-filled chests, until completion of the fieldwork and during sample transit to the laboratory.	
Quality Control & Laboratory Analysis	All groundwater samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised testing of rinsate blank and trip blank samples. All samples were transported under strict Chain-of-Custody (COC) conditions. COC certificates and laboratory sample receipt documentation were provided to El for confirmation purposes.	
Sample Transport	After sampling, refrigerated sample chests were transported to SGS Australia Pty Ltd using strict Chain-of-Custody (COC) procedures. Inter-laboratory duplicate (ILD) samples	

Activity/Item	Details		
	were forwarded to Envirolab Services Pty Ltd (Envirolab) for QA/QC analysis. A Sample Receipt Advice (SRA) was provided by each laboratory to document sample condition upon receipt. Copies of SRA and COC certificates are presented in Appendix H .		

7. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if the data meets the objectives for the project (USEPA 2006). Data quality assessment included an evaluation of the compliance of the field sampling, field and laboratory duplicates and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements. The findings of the data quality assessment in relation to the current investigation at the site are discussed in detail in **Appendix J**.

The QC measures generated from the field sampling and laboratory analytical program are summarised in **Table 7-1**.

Data Quality	Control	Conformance [Yes, Part, No]	Report Sections
Preliminaries	Data Quality Objectives established	Yes	See Section 6.
Field work	Suitable documentation of fieldwork observations including borehole logs, sample register, field notes, calibration forms	Yes	See Appendix F and Appendix G .
Sampling Plan	Use of relevant and appropriate sampling plan (density, type, and location)	Yes	See sample rationale
	All media sampled and duplicates collected	Yes	Soil vapour not required.
	Use of approved and appropriate sampling methods (soil, groundwater, air quality)	Yes	See Section 6
	Selection of soil samples according to field PID readings (where VOCs are present)	Yes	See Section 6 and Appendix F
	Preservation and storage of samples upon collection and during transport to the laboratory	Yes	See Section 6
	Appropriate Rinsate, Field and Trip Blanks taken	Yes	See Appendix J
	Completed field and analytical laboratory sample COC procedures and documentation	Yes	See Appendix H and Appendix I
Laboratory	Sample holding times within acceptable limits	Yes	See Appendix H and Appendix J
	Use of appropriate analytical procedures and NATA-accredited laboratories	Yes	See Appendix K
	LOR/PQL low enough to meet adopted criteria	Yes	See Appendix K
	Laboratory blanks	Yes	See Appendix J and Appendix K

Table 7-1 Quality Control Process

Data Quality	Control	Conformance [Yes, Part, No]	Report Sections
	Laboratory duplicates	Yes	See Appendix J and Appendix K
	Matrix spike/matrix spike duplicates (MS/MSDs)	Yes	See Appendix J and Appendix K
	Surrogates (or System Monitoring Compounds)	Yes	See Appendix J and Appendix K
	Analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as Relative Percentage Difference (RPD)	Yes	See Appendix J and Appendix K
	Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements	Yes	See Appendix J and Appendix K
Reporting	Report reviewed by senior staff to assess project meets desired quality, EPA guidelines and project outcomes.	Yes	See Report Distribution page at front of report.

7.1 QUALITY OVERVIEW

On the basis of the field and analytical data validation procedure employed, the overall quality of the analytical data produced for the site was considered to be of an acceptable standard for interpretive use and preparation of a conceptual site model (CSM).

8. RESULTS

8.1 SOIL INVESTIGATION RESULTS

8.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling of the soil investigation boreholes, installation of monitoring wells may be described as a layer of anthropogenic filling overlying residual soils and weathered shale bedrock. The geological information obtained during the investigation is summarised in **Table 8-1** and borehole logs from these works are presented in **Appendix F**.

Layer	Description	Minimum & maximum depth of layer (mBGL)
Concrete	Pavement	0.0- 0.15
Fill	Sandy CLAY; medium t high plasticity, with sub angular to angular gravels, no odour.	0.15–0.7
Residual Soil	Silty CLAY; medium to high plasticity, grey mottled red, no odour.	0.7-8.0
Bedrock	SHALE; extremely weathered, light brown.	8.0-9.8+

Table 8-1 Generalised Subsurface Profile

Note:

+ Denotes the material was detected at the termination depths.

8.1.2 Field Observations and PID results

Soil samples were obtained from the test bores at various depths ranging between 0.2 mBGL to 5.5 mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, and charcoal) and the following observations were noted:

- Angular to sub-angular gravels were reported within the fill material;
- No unusual odours were reported within the soil samples collected from across the site;
- Fibre cement sheet fragments were not observed in any drilling cuttings; and
- No signs of ash or slag materials were detected in any of the drilled boreholes.
- PID results are shown in the borehole logs (**Appendix G**). PID value at sample BH6_0.6-0.7 reported was >10 ppm.

8.2 **GROUNDWATER INVESTIGATION RESULTS**

8.2.1 Monitoring Well Construction

Three (3) groundwater monitoring well was installed to evaluate the condition of the groundwater at the site. The groundwater monitoring wells were installed to screen the groundwater within the natural silty clay. Well construction details for the installed groundwater monitoring well are summarised in **Table 8-2** and presented on the respective bore log attached in **Appendix F**.

8.2.2 Field Observations and Water Test Results

A single GME was conducted on the well on 2 May 2018. On this date, standing water levels (SWLs) were measured prior to well purging, and recorded with well purge volumes and field-based water test results. A summary of the recorded field data is presented in **Table 8-2**.

	_		-		-	
Well ID	Stick-up (m)	Ground Level RL(mAHD)	Bore Depth (mBGL)	Screen Interval (mBGL)	Initial well volume / Volume developed (L)	Lithology Screened
BH1M	-0.09	Approx. 12.97 m	5.7	4.3-5.73	20L	Silty CLAY
BH2M	-0.10	Approx. 12.85 m	9.8	7.8-9.87	20L	Silty CLAY
BH8M	-0.10	Approx. 13.05 m	8	6.0-8.0	20L	Silty CLAY

 Table 8-2
 Monitoring Well Construction Details (Installed 22/02/18)

Notes:

mAHD - metres Australian Height Datum

L - Litres

Ground level RLs have been approximated from the survey plan (Brunskill McClenahan & Associates Pty Ltd, 2013. Project Ref. 9284 – 3/11, dated 04 September 2013)

Table 8-3 Groundwater Field Data

Well ID	Purge Volume (L)	Depth of pump inlet	Initial SWL (mBTOC)	Initial SWL (mAHD)	DO (mg/L)	Field pH	Field EC (μS/cm)	Temp (°C)	Redox (mV)	Comments
BH1M	2.0	4.5m BGL	3.25	9.63	0.69	7.08	13250	24.88	137.6	Medium- high turbidity, brown and yellow, no odour.
BH2M	2.0	8m BGL	2.99	9.76	0.21	7.88	11340	24.2	105.2	Low turbidity, pale yellow, no odour.
BH8M	2.0	6m BGL	3.23	9.72	0.43	7.82	13140	25.52	90.9	Low-medium turbidity, brown and grey, no odour.

Notes:

GME – Groundwater monitoring event.

SWL - Standing Water Levels.

L – litres (referring to volume of water purged from the well prior to groundwater sample collection).

EC – groundwater electrical conductivity as measured onsite using portable EC meter.

 μ S/cm – micro Siemens per centimetre (EC units).

mAHD – metres Australian Height Datum.

DO – Dissolved Oxygen in units of milligrams per litre (mg/L) All groundwater parameters (pH, EC and DO) were tested on site. Field Redox (mV) readings adjusted to Standard Hydrogen Electrode (SHE) by adding field electrode potential (205mV).

With reference to **Table 9-3**, the field pH data indicated that the groundwater was slightly alkaline, of brackish salinity, while redox conditions were oxidising.

8.3 LABORATORY ANALYTICAL RESULTS

8.3.1 Soil Analytical Results

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the SILs, is presented in **Table 8-4**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in **Table T1** at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix H** and all laboratory analytical reports for tested soil samples are presented in **Appendix I**.

	-	•		
No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
Hydrocarbons				
13	TPH C6–C9	<20	<20	None
13	TPH C10-C36	<110	160	None
13	TRH F1	<25	<25	None
13	TRH F2	<25	32	None
13	TRH F3	<90	120	None
13	TRH F4	<120	<120	None
13	Benzene	<0.1	<0.1	None
13	Toluene	<0.1	<0.1	None
13	Ethyl benzene	<0.1	<0.1	None
13	Total xylenes	<0.3	<0.3	None
13	Naphthalene	<0.1	<0.1	None
13	Benzo(a)pyrene	<0.1	0.5	None
13	Carcinogenic PAHs	<0.3	0.7	None
13	Total PAH	<0.8	4.5	None
OCPs				
9	Heptachlor epoxide	<0.1	<0.1	None
9	Chlordane	<0.1	<0.1	None
9	Total OCPs	<1	<1	None
9	Heptachlor	<0.1	<0.1	None

Table 8-4 Summary of Soil Analytical Results

Heavy Metal				
13	Arsenic	4	8	None
13	Cadmium	<0.3	0.5	None
13	Chromium (Total)	9	27	None
13	Copper	6.3	32	None
13	Lead	21	510	None
13	Mercury	<0.05	0.75	None
13	Nickel	1.6	35	None
13	Zinc	8	350	None
PCBs				
9	Total PCBs	<1	<1	None
OPPs				
9	Total OPPs	<1.7	<1.7	None
Asbestos				
9	Asbestos	No asbestos detected	Asbestos detected	BH2M 0.2-0.3

8.3.2 Groundwater Analytical Results

A summary of laboratory results showing test sample quantities, maximum analyte concentrations, and samples found to exceed the GILs, are presented in **Table 8-5**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted groundwater criteria are presented in **Table T2** at the end of this report. Completed documentation used to track groundwater sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix H** and all laboratory analytical reports for tested groundwater samples are presented in **Appendix I**.

No. of primary samples	Analyte	Max. Conc. (µg/L)	Sample locations exceeding investigation levels
Heavy Met	tal		
3	Arsenic	3	None
3	Cadmium	0.4	None
3	Chromium (Total)	110	BH2M (110 μg/L); BH8M (27 μg/L) > ANZECC / ARMCANZ (2000) Marine '27 μg/L' (Cr III) / '4.4 μg/L' (Cr IV)
3	Copper	52	BH1M (36 μg/L); BH2M (52 μg/L); BH8M (45 μg/L) > ANZECC / ARMCANZ (2000) Marine '1.3 μg/L)
3	Lead	4	None
3	Mercury	<pql< td=""><td>None</td></pql<>	None
3	Nickel	15	BH1M (15 μg/L); BH8M (11 μg/L) > ANZECC / ARMCANZ (2000) Marine '7 μg/L)
3	Zinc	180	BH1M (86 μg/L); BH2M (59 μg/L); BH8M (180 μg/L) > ANZECC / ARMCANZ (2000) Marine '15 μg/L')
Hydrocarb	oons		
3	TRH F1	<pql< td=""><td>None</td></pql<>	None
3	TRH F2	<pql< td=""><td>None</td></pql<>	None
3	TRH F3	<pql< td=""><td>None</td></pql<>	None
3	TRH F4	<pql< td=""><td>None</td></pql<>	None
3	Benzene	<pql< td=""><td>None</td></pql<>	None
3	Toluene	<pql< td=""><td>None</td></pql<>	None
3	Ethylbenzene	0.9	None
3	Total xylenes	<pql< td=""><td>None</td></pql<>	None
3	Benzo(a)pyrene	<pql< td=""><td>None</td></pql<>	None
3	Naphthalene	<pql< td=""><td>None</td></pql<>	None
3	Total PAHs	<pql< td=""><td>None</td></pql<>	None
Phenols			
3	Total Phenolics	<pql< td=""><td>None</td></pql<>	None
VOCs			
3	Total	<pql< td=""><td>None</td></pql<>	None

Table 8-5 Summary of Groundwater Analytical Results

9. SITE CHARACTERISATION

9.1 REVIEW OF CONCEPTUAL SITE MODEL

On the basis of investigation findings the preliminary CSM discussed in **Section 4** was considered to appropriately identify contamination sources, migration mechanisms, as well as potential onsite and offsite receptors.

Previously known data gaps, as outlined in **Section 4.4** have largely been addressed. However, the following remaining data gaps will need to be addressed in subsequent investigation works:

- Potential presence of hazardous building materials used in construction of site structures; and
- Areas of the site which were inaccessible for soil sampling due to existing buildings / infrastructure.

9.2 SOIL CHARACTERISATION

Concentrations of heavy metals, hydrocarbons, OCPs, OPPs, and PCBs were found to be below adopted NEPM (2013) HIL-B and HSL-A & B criteria.

Asbestos was detected within fill sample BH2M 0.2-0.3. As the proposed development will require excavation of a four level basement, fill soils will be removed from the site and thus removing human health risks for future occupiers of the site.

9.3 GROUNDWATER

Groundwater concentrations were found to be below the adopted human health and ecologicallybased investigation criteria (**Section 7.3**), with the exception of Chromium, copper, nickel and zinc.

Based on EI's experience, heavy metals concentration exceeding water quality criteria are ubiquitous in groundwater systems in long-standing urban/industrial environments such as Liverpool. Whether these results are treated as exceedances of criteria, or representative of urban background groundwater conditions, the identified groundwater concentrations are not considered to represent a cause for environmental concern.

10. CONCLUSIONS

The property located at 26 Elizabeth Street, Liverpool NSW was the subject of a Detailed Site Investigation (DSI) that was conducted in order to assess the nature and degree of on-site contamination associated with current and former uses of the property. Based on the findings of this assessment it was concluded that:

Desktop Study

- The site is located the main business district of Liverpool and is situated within the Local Government Area of Liverpool City Council. The land parcel covers a total area of approximately 3,144 m²;
- Site land title records indicated that the site had be owned by Peter Warren (Properties) Pty. Limited (motor trader) since 1967 to 2015.
- Historic aerial photography showed that from the 1930s the surrounding land use consisted of
 predominantly residential developments, with the site bound on the north by Elizabeth Street.
 From the 1960s increased commercialisation along Elizabeth Street occurred until the 1990s,
 from which point the surrounding area remained relatively unchanged until the present day.
- Site history records held by Liverpool City Council were not available at the time of this assessment.
- SafeWork searches were completed for the site located at 26 Elizabeth Street, Liverpool NSW and no records pertaining to the site were held.
- EPA Notified / Listed / POEO:

There are no sites with any regulatory notices, listed as contaminated or on the POEO Public Register issued by the EPA within 500 m of the site.

Intrusive Investigations

- The sub-surface layers comprised anthropogenic filling overlying natural clays;
- Groundwater inflow was encountered at 4.8 mBGL in BH1M, 8.3 mBGL in BH2M, 6.1 mBGL in BH8M. Standing Water Levels (SWLs) collected during the GME were reported at 3.25 mBGL, 2.99 mBGL, 3.23 mBGL;
- Groundwater flow direction was indicated to the south-west based on monitoring of the installed wells;
- Results of soil samples collected from soil test boreholes indicated the following:
 - Concentrations of asbestos were detected within fill sample BH2M 0.2-0.3;
- Results of Groundwater samples collected from soil test boreholes indicated the following:
 - Chromium, copper, nickel and zinc exceeded the ANZECC / ARMCANZ (2000) Marine Water criteria;

- Previously known data gaps, as outlined in the CSM (**Section 4**), have largely been addressed; however, the following data gaps remain and require closure by additional investigation:
 - Presence of hazardous building materials used in construction of site structures;
 - Investigation of the concrete patched area at the rear portion of the service centre; and
 - Soil sampling areas which were inaccessible due to existing buildings / infrastructure.

Conclusions

Based on the findings from this DSI conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 12**), El conclude localised soil contamination was observed and will require remediation. A number of data gaps exist that will require further investigation (post-demolition of existing structures to enable access).

Based on EI's experience, heavy metals concentration exceeding water quality criteria are ubiquitous in groundwater systems in long-standing urban/industrial environments such as Liverpool. Whether these results are treated as exceedances of criteria, or representative of urban background groundwater conditions, the identified groundwater concentrations are not considered to represent a cause for environmental concern.

In view of the proposed development scope, and currently available information, EI consider that the contamination identified can be remediated to render the site suitable for the proposed land use, provided recommendations detailed in **Section 11** are implemented.

El note that the site contamination issues can be managed through the development application process in accordance with the *State Environmental Planning Policy 55 (SEPP 55) – Remediation of Land*, with the requirements for remediation and validation incorporated into conditions of development consent.

11. RECOMMENDATIONS

Based on the findings of this DSI, the following recommendations will be required to be implemented before the site can be confirmed as suitable for the proposed development:

- Preparation of a remedial action plan (RAP) that outlines:
 - i. Supplementary investigations:
 - a. Further soil investigation to assess inaccessible soils and risk to construction phase and future site users including investigation of the concrete patched area at the rear portion of the service centre.
 - b. Further soil sampling to aid in classification of fill for disposal purposes.
 - ii. Development of suitable remediation options for identified impacted fill (asbestos) and other excess soil by excavation and disposal or other appropriate method.
 - iii. Document waste classification assessment of soil earmarked for any excavation that may occur including piling waste, backfill material from excavations at the site, in accordance with the EPA (2014) Waste Classification Guidelines;
 - iv. Document preliminary environmental management consideration and a preliminary validation sampling and quality plan.
- Implementation of the RAP, and
- Preparation of a final site validation report by a suitably qualified environmental consultant, certifying site suitability of soils and groundwater for the proposed land use.

12. STATEMENT OF LIMITATIONS

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to EI's investigations and assessment.

El's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither El, nor any other reputable consultant, can provide unqualified warranties nor does El assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for the abovenamed client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

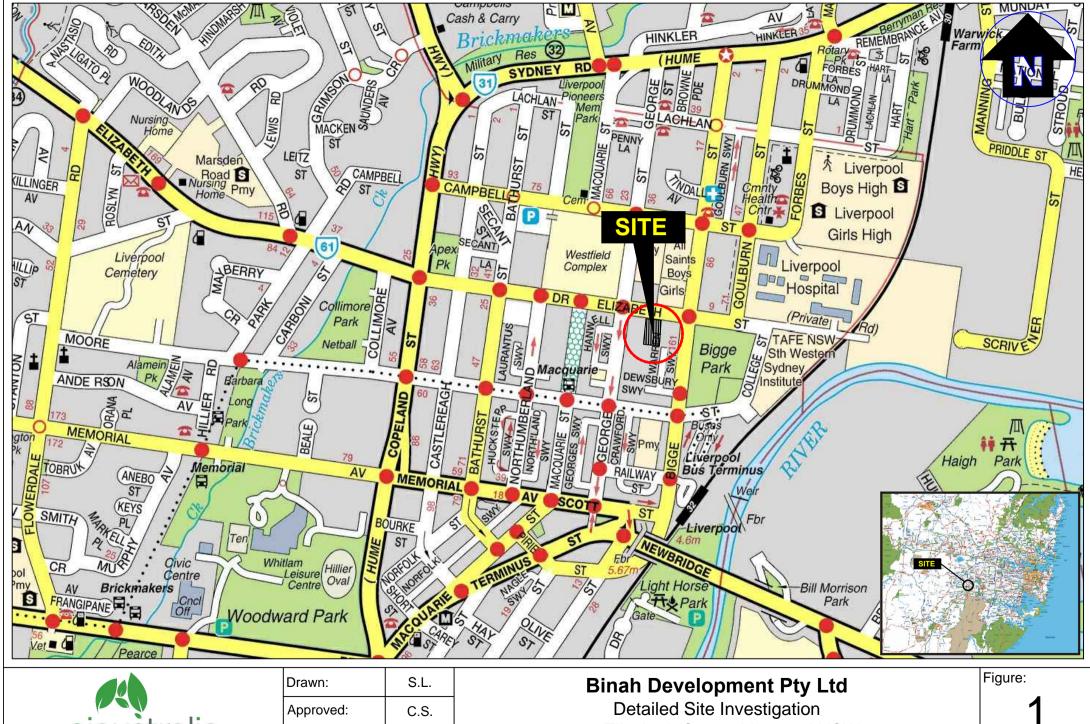
This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

REFERENCES

- ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.
- Ahern C R, Stone, Y, and Blunden B (1998) *Acid Sulfate Soils Assessment Guidelines*, part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.
- Australian Standard (2005) Table E1 *Minimum sampling points required for site characterisation*, in Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes of the Sydney 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.
- Douglas Partners (2015). Preliminary Geotechnical Investigation and Preliminary Waste Classification Assessment. Project No. 84654, dated 30 January 2015.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme, 3rd Edn., EPAP0269, October 2017.
- Murphy CL (1997) Acid Sulfate Soil Risk of the Botany Bay Sheet Department of Land and Water Conservation, Sydney, Second Edition. Supplied by the Sydney South Coast, Geographical Information Systems Unit.
- Naylor SD, Chapman GA, Atkinson G, Murphy CL, Tulau MJ, Flewin TC, Milford HB and Morand DT (1998) Guidelines for the Use of Acid Sulfate Soil Risk Maps, Department of Land and Water Conservation, Sydney, Second Edition.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p.
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.
- WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.
- WHO (1996) Guidelines for Drinking Water Quality, World Health Organisation, 1996.

ABBREVIATIONS

ABC	Ambient Background Concentration
ACL	Added Contaminant Limit
ACM	Asbestos-containing materials
AS	Australian Standard
ASS	Acid sulfate soils
ANZECC	Australian and New Zealand Environment Conservation Council
ARMCANZ	6
B(a)P	Benzo(a)Pyrene (a PAH compound), - B(a)P TEQ Toxicity Equivalent Quotient
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
CBD	Central Business District
CLM	Contaminated Land Management
CSM	Conceptual Site Model
COC	Chain of Custody
COPC	Contaminants of Potential Concern
cVOCs	Chlorinated Volatile Organic Compounds (a sub-set of the VOC analysis suite)
DA	Development Application
DBYD	Dial before you dig
DEC	Department of Environment and Conservation, NSW (see OEH)
DECC	Department of Environment and Climate Change, NSW (see OEH)
DECCW	Department of Environment, Climate Change and Water, NSW (see OEH)
DA	Development Application
DO	Dissolved Oxygen
DP	Deposited Plan
DSI	Detailed Site Investigation
EC	Electrical Conductivity
Eh	Redox potential
EIL	Ecological Investigation Level
EPA	Environment Protection Authority
ESL	Ecological Screening Level
F1	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)
F2	TRH > $C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)
F3	TRH >C ₁₆ – C ₃₄ (Ref. NEPM 2013, Schedule B1)
F4	TRH >C ₃₄ – C ₄₀ (Ref. NEPM 2013, Schedule B1)
GIL	Groundwater Investigation Level
GME	Groundwater Monitoring Event
GPR	Ground Penetrating Radar
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
LNAPL	Light, non-aqueous phase liquid (also referred to as PSH)
LOR	Limit Of Reporting of laboratory instruments (see PQL)
DNAPL	Dense, non-aqueous phase liquid
m	Metres
mAHD	Metres Australian Height Datum
mBGL	Metres Below Ground Level
mg/L	Milligrams per litre
<u> </u>	


μg/L mV MW NATA NEPC NEPM NSW OCP OPP OEH PAHs PCB PID pH PSH PQL PSI QA/QC RAP SIL SRA SWL TCLP TDS TPH TRH	Micrograms per litre Millivolts Monitoring well National Association of Testing Authorities, Australia National Environmental Protection Council National Environmental Protection Measure New South Wales Organochlorine pesticides Organophosphorus pesticides Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW) Polycyclic Aromatic Hydrocarbons Polychlorinated Biphenyls Photo-ionisation Detector Measure of the acidity or basicity of an aqueous solution Phase-separated hydrocarbons (also referred to as LNAPL) Practical Quantitation Limit (limit of detection for respective laboratory instruments) Preliminary Site Investigation Quality Assurance / Quality Control Remediation Action Plan Soil Investigation Level Sample receipt advice (document confirming laboratory receipt of samples) Standing Water Level Toxicity Characteristics Leaching Procedure Total dissolved solids (a measure of water salinity) Total Petroleum Hydrocarbons (superseded term equivalent to TRH) Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
	-
UCL	Upper Confidence Limit of the mean
UPSS	Underground Petroleum Storage System
US EPA	United States Environmental Protection Agency
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds (specific organic compounds which are volatile)
VOCs	Volatile Organic Compounds (specific organic compounds which are volatile)
WADOH	Western Australia Department of Health
WHO	World Health Organisation

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1

FIGURES

Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088

prawn:	S.L.
pproved:	C.S.
Date:	13-04-18
cale:	Not To Scale

S

26 Elizabeth Street, Liverpool NSW

Site Locality Plan

Project: E23796.E02_Rev1

Approximate site boundary _ __ _

Approximate monitoring well location \bigcirc

 \bigcirc Approximate borehole location

– – Approximate basement boundary

Approximate concrete patched area

Drawn:	S.L.	E
Approved:	C.S.	26
Date:	26-04-18	

Detailed Site Investigation Elizabeth Street, Liverpool NSW Sampling Location Plan

2

Project: E23796.E02_Rev1

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1

TABLES

Table T1 - Soil Investigation Results

								Metals g/kg)							ble Hydrocarbon g/kg)	เร่				BTEXN (mg/kg				PAHs (mg/kg)			OCP (n	ıg/kg)				
SGS Batch No.	Sample Date	9 Sample ID	Geological Unit	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	C6-C9	C10-C36	F1	F2	F3	F4	Benzene	Toluene	Ethyl benzene	Total Xylenes	Naphthalene	Benzo(a)pyr ene	Carcinogenic PAHs	Total PAH	Heptachlor	Heptachlor epoxide	Chlordane	Total OCPs	OPP (mg/kg)) PCB (mg/kg)	Asbestos (Presence/Ab sence)
Site Validation Cri	teria			1	1		-1							11							-1					I		·				
HIL B				500	150	500	30,000	1,200	120	1,200	60,000				NR					NR			NR	4	400	NR	4	90	400	NR	1	NR
for residential sites	with minimal soil ac	ccess, as per Table 1A(1) of NEPM 2013 S		500	150	500	30,000	1,200	120	1,200	00,000					-			1	-	1	1	INIX	+	400	INIX	4		400	NR		
			0 m to < 1 m	_										45				0.5	160	55	40	3	-								1	
HSL A&B (Sand)	ning lovel for reside	ential sites, as per NEPM 2013 Schedule B	1 m to < 2 m	-			1	NR.					١R	70	NR	NR	NR	0.5	220	NL	60	NL	-	NR			N	k /		NR	NR	NR
nealui-based scree	ning level for reside	ential sites, as per NEPM 2013 Schedule B		-										110				0.5	310	NL	95	NL	-								4 7	
			4 m+											200				0.5	540	NL	170	NL									4	4
			0 m to < 1 m	-										50	280	-		0.7	480	NL	110	5	-								1	
HSL A&B (Clay)	ning lovel for reside	ential sites, as per NEPM 2013 Schedule B	1 m to < 2 m	-			1	NR .				1	NR .	90	NL	NR	NR	1	NL	NL	310	NL	-	NR			N	k /		NR	NR	NR
riealui-baseu sciee	riling level for reside	ential sites, as per NEPW 2013 Schedule B		_										150	NL			2	NL	NL	NL	NL	-								4 7	
MAN			4 m+			07		540	0.75	05	050	.001	100	290	NL	100		3	NL	NL	NL	NL	0.5		15				1001		4	
Lab PQLs				8	0.5	0.3	32	510	0.75	35	350 0.5	<pql 20</pql 	160 110	<pql 25</pql 	32	120 90	<pql 120</pql 	<pql 0.1</pql 	<pql 0.1</pql 	<pql 0.1</pql 	<pql 0.3</pql 	<pql 0.1</pql 	0.5	0.7	4.5	<pql 0.1</pql 	<pql 0.1</pql 	<pql 0.1</pql 	<pql 1.0</pql 	<pql 1.7</pql 	<pql 1.0</pql 	Yes
Lab PQLS	1			6		10				0.5	58	<20			<25	90 <90	<120					<0.1							1.0		<1	-
		BH1M 0.2-0.3 BH1M 0.6-0.7	FILL : SANDY CLAY NATURAL : SILTY CLAY	5	<0.3	10	18	510 28	0.75 <0.05	2.2	50	<20	<110 <110	<25 <25	<25	<90	<120	<0.1	<0.1	<0.1	< 0.3	<0.1	<0.1	< 0.3	<0.8	<0.1	<0.1	<0.1		<1.7		No N.A.
		BH1M 0.6-0.7 BH1M 1.1-1.2	NATURAL : SILTY CLAY	N.A.	<0.5 N.A.	N.A.	6.3 N.A.	20 N.A.	<0.05 N.A.	2.2 N.A.	N.A.	<20 N.A.	×110 N.A.	N.A.	N.A.	<90 N.A.	<120 N.A.	×0.1	<0.1 N.A.	<0.1 N.A.	<0.3 N.A.	<0.1 N.A	<0.1 N.A.	<0.3 N.A.	<0.8 N.A.	N.A. N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
			NATURAL : SILTY CLAY	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
		BH1M 2.1-2.2 BH1M 3.0-3.1	NATURAL : SILTY CLAY	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
		BH1M 3.5-3.6	NATURAL : SILTY CLAY	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
		BH1M 3.5-3.0 BH1M 4.4-4.5	NATURAL : SILTY CLAY	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
		BH1M 4.4-4.5 BH2M 0.2-0.3	FILL : SANDY CLAY	5	<0.3	19	21	130	0.2	15	120	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	0.2	0.4	2	<0.1	<0.1	<0.1	<1	<1.7	<1 N.A.	Yes
		BH2M 0.5-0.6	NATURAL : SILTY CLAY	6	<0.3	9.9	15	50	0.2	2.5	41	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	0.2	<0.3	<0.8	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
		BH2M 0.9-1.0	NATURAL : SILTY CLAY	N.A.	N.A.	N.A.	N.A.	N.A.	0.5 N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
		BH2M 1.4-1.5	NATURAL : SILTY CLAY	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
		BH2M 2.4-2.5	NATURAL : SILTY CLAY	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
		BH2M 3.5-3.6	NATURAL : SILTY CLAY	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
SE178319.001	20/04/2018	BH2M 4.0-4.1	NATURAL : SILTY CLAY	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
		BH2M 4.5-4.6	NATURAL : SILTY CLAY	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
		BH3 0.2-0.3	FILL : SANDY CLAY	6	<0.3	11	8.5	56	0.07	2.5	50	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.1	<0.3	<0.8	<0.1	<0.1	<0.1	<1	<1.7	<1	No
		BH4 0.2-0.3	FILL : SANDY CLAY	4	<0.3	9.1	14	77	0.12	2.4	130	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	<0.1	<0.3	<0.8	<0.1	<0.1	<0.1	<1	<1.7	<1	No
		BH5 0.3-0.4	FILL : SANDY CLAY	7	<0.3	19	27	120	0.32	7.3	130	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	0.5	0.7	4.5	<0.1	<0.1	<0.1	<1	<1.7	<1	No
		BH6 0.3-0.4	FILL : SANDY CLAY	7	<0.3	14	26	160	0.5	5.3	140	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<0.1	0.2	0.3	1.4	<0.1	<0.1	<0.1	<1	<1.7	<1	No
		BH6 0.6-0.7	NATURAL : SILTY CLAY	4	< 0.3	9	8.3	29	< 0.05	1.6	9.7	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	< 0.3	<0.1	<0.1	<0.3	<0.8	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
		BH7 0.2-0.3	FILL : SANDY CLAY	5	0.5	27	26	230	< 0.05	35	190	<20	120	<25	<25	120	<120	<0.1	<0.1	<0.1	< 0.3	<0.1	< 0.1	< 0.3	<0.8	<0.1	<0.1	<0.1	<1	<1.7	<1	No
		BH8M 0.5-0.6	FILL : SANDY CLAY	6	0.4	13	28	250	0.18	11	350	<20	160	<25	32	120	<120	< 0.1	<0.1	<0.1	< 0.3	<0.1	0.4	0.6	4.2	<0.1	<0.1	<0.1	<1	<1.7	<1	N.A.
		BH8M 1.9-2.0	NATURAL : SILTY CLAY	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	No
		BH8M 2.4-2.5	NATURAL : SILTY CLAY	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
		BH9 0.2-0.3	FILL : SANDY CLAY	7	0.3	19	32	160	0.14	4.3	200	<20	150	<25	<25	120	<120	<0.1	<0.1	<0.1	< 0.3	<0.1	0.3	0.5	2.6	<0.1	<0.1	<0.1	<1	<1.7	<1	No
		BH9 0.9-1.0	NATURAL : SILTY CLAY	8	<0.3	19	12	21	< 0.05	2.9	12	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	< 0.3	<0.1	<0.1	<0.3	<0.8	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

NL

Not tested / Not calculated. Concentration exceeds remdiation criteria. No reference criteria available in current regulatory tools. Not Limiting' If the derived soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical, i.e. where the soil vapour is at equilibrium with the pore water, then the soil vapour source cannot exceed a level that would result in the maximum allowable vapour risk for the given scenario, therefore the HSL is not limiting.

(Laboratory's) Practical Quantitation Limit TRH Fractions TRH-F1 = C_9 - C_0 minus the sum of BTEX concentrations TRH-F2 = >C1_0 - C1_6 minus the concentration of Naphthalene TRH-F3 = >C1_6 - C3_4 TRH-F4 = >C3_4 - C4_0 PQL 1

Report No.: E23796.E02

Table T2 – Summary of Grou	undwater Investiga	ation Results																			E23796 -	Liverpool		
						Heavy	Metals					PAHs				BTEX				TF	RHs		VOCs	Phenolics
Sample Identific	ation	Date	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Total PAHs	Benzo(ɑ)pyrene	Naphthalene	Benzene	Toluene	Ethylbenzene	o-xylene	m/p-xylene	F1	F2	F3	F4	Total	Total
BH1M			<1	0.2	4	36	3	<0.1	15	86	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1.5	<50	<60	<500	<500	<10	<0.01
BH2M		2/05/2018	3	0.4	110	52	4	<0.1	3	59	<1	<0.1	<0.1	<0.5	<0.5	0.8	<0.5	<1.5	<50	<60	<500	<500	<10	<0.01
BH8M			1	0.2	27	45	4	<0.1	11	180	<1	<0.1	<0.1	<0.5	<0.5	0.9	<0.5	<1.5	<50	<60	<500	<500	<10	<0.01
			V							G	ILs		1	1					1	1				
HSL - A&B Low	to high density reside	ntial⁵											NL	800	NL	NL	N	L	1,000	1,000				
HSL - D Co	ommercial / Industrial⁵												NL	5,000	NL	NL	N	L	6,000	NL				
	Marine	Water ⁴	2.3 (As III) 4.5 (AS V)	0.7 ³	27 (CR III) 4.4 (Cr IV)	1.3	4.4	0.1 ³	7	15 ²			50 ²	500	180 ⁹	5 ⁹	350 ⁹	275 ⁹	50 ⁸	60 ⁸	500 ⁸	500 ⁸		370
ANZECC / ARMCANZ (2000)	Fresh	Water ⁴	24 (AsIII) 13 (AsV)	0.2	1 (CR VI)	1.4	3.4	0.06 ³	11	8 ²			16	950	100	80 ⁹	350	215	50	60	500	500		570
	Drinking	g Water ⁶	10	2		2,000	10	1	20			0.01		1	800	300	60	00						250
	Recreatio	nal Water ⁷	50	5	50	1,000	50	10	200	5,000		0.1		10	8,000	3,000	6,0	000						2,500 ⁷

Notes:

All values are $\mu g/L$ unless stated otherwise

NL = Not Limiting

NA = 'Not Analysed' i.e. the sample was not analysed.

ND = Not Detected - i.e. concentration below the laboratory PQL

- F1 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
- F2 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

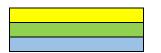
F3 (>C16-C34)

F4 (>C34-C40)

* = For EI (2010), TRH F1 to TRH F4 was not reported. C6 - C9, C10 - C14, C15 - C28 and C29 - C36 have been reported instead of TRH F1, TRH F2, TRH F3 and TRH F4, respectively.

2 = Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

3 = Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance


4 = NEPM (2013) Groundwater Investigation Levels for fresh and marine water quality, based on ANZECC & ARMCANZ (2000).

6 = NEPM (2013) Groundwater Investigation Levels for drinking water quality, based on Australian Drinking Water Guidelines (NHMRC 2011).

7 = Drinking Water value has been used multiplied by a factor of 10 to address the secondary contact recreation (NHMRC, 2011).

8 = In lack of a criteria the laboratory PQL has been used (DEC, 2007).

9 = Low and moderate reliability toxicity data, refer to ANZECC & ARMCANZ (2000)

Highlighted indicates analyte concentration value exceeding the adopted human health criteria Highlighted indicates ecological criteria exceeded Highlighted indicates criteria exceeded

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1

APPENDIX A PROPOSED DEVELOPMENT PLANS

No.	TITLE	REV.
TP00.00	COVER SHEET	P2
TP00.01	DEVELOPMENT SUMMARY	P2
TP00.02	EXISTING / DEMOLITION PLAN	P2
TP00.03	PROPOSED SITE PLAN	P8
TP00.04	SITE SURVEY	P2
TP00.05	SITE DEDICATION PLAN	P2
TP00.06	CONSTRAINTS PLAN AND SECTION	P2
TP00.07	BASIX	P2
TP01.00	BASEMENT 4 PLAN	P8
TP01.01	BASEMENT 3 PLAN	P19
TP01.02 TP01.03	BASEMENT 2 PLAN	P20 P20
TP01.03 TP01.04	BASEMENT 1 PLAN GROUND PLAN	P20 P19
TP01.04 TP01.05	LEVEL 1 PLAN	P19
TP01.05	LEVEL 1 PLAN	P17
TP01.07	LEVEL 2 PLAN	P17
TP01.08	LEVEL 4 PLAN	P16
TP01.09	LEVEL 5 PLAN	P17
TP01.10	LEVEL 6 PLAN	P16
TP01.11	LEVEL 7 PLAN	P16
TP01.12	LEVEL 8 PLAN	P12
TP01.13	LEVEL 9 PLAN	P18
TP01.14	LEVEL 10 PLAN	P14
TP01.15	LEVEL 11-14, 16-19, 21-24, 26-29, 31 PLANS	P12
TP01.16	LEVEL 15, 20, 25, 30 PLAN	P16
TP01.18	LEVEL 32-34 PLANS	P12
TP01.40	LEVEL 35 PLAN	P18
TP01.41	ROOF PLAN	P13
TP01.50	GROUND FLOOR MEZZANINE	P2
TP02.01	NORTH ELEVATION	P8
TP02.02	SOUTH ELEVATION	P8
TP02.03	EAST ELEVATION	P8
TP02.04 TP03.01	WEST ELEVATION SECTION 1	P8 P15
TP03.01	SECTION 2	P3
TP03.02	SECTION 384	P15
TP03.12	RAMP SECTIONS	P7
TP05.01	SHADOW DIAGRAMS - WINTER 9AM	P2
TP05.02	SHADOW DIAGRAMS - WINTER 10AM	P2
TP05.03	SHADOW DIAGRAMS - WINTER 11AM	P2
TP05.04	SHADOW DIAGRAMS - WINTER 12PM	P2
TP05.05	SHADOW DIAGRAMS - WINTER 1PM	P2
TP05.06	SHADOW DIAGRAMS - WINTER 2PM	P2
TP05.07	SHADOW DIAGRAMS - WINTER 3PM	P2
TP06.01	GFA DIAGRAMS	P6
TP06.02	SITE COVER DIAGRAMS	P2
TP06.03	DEEP SOIL PLANTING DIAGRAM	P2
TP06.04	COMMUAL OPEN SPACE PLANS	P2
TP06.05	SOLAR COMMUNAL OPEN SPACE	P2
TP06.10	SOLAR AND CROSS VENTILATION COMPLIANCE	P2
TP06.11	SOLAR POINT OF VIEW STUDY	P2
TP06.12	SOLAR POINT OF VIEW STUDY	P2 P2
TP06.13 TP06.14	SOLAR POINT OF VIEW STUDY SOLAR POINT OF VIEW STUDY	P2 P2
TP06.14 TP06.15	SOLAR POINT OF VIEW STUDY SOLAR POINT OF VIEW STUDY	P2 P2
TP06.15 TP06.20	STORAGE PLAN	P2
TP06.20	STORAGE SCHEDULE	P2
TP06.30	ADAPTABLE, LHA COMPLIANT & ACCESSIBLE PLANS	P6
TP06.41	WASTE MANAGEMENT STRATEGY	P2
TP07.01	NOTIFICATION PLAN	P2

TP00.00 P2

PRELIMINARY

Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE

NE MG

Project ELIZABETH STREET	COVER SHEET	Project No 218004 Date 14/09/18	Author NE Sca	ale: @ A1
26 ELIZABETH STREET				

Detailment: Rules Learners Property PP, LLL steller al common late: statadry laren driver rights including corputing and intelescular driver rights in networks and the rights including corputing and intelescular driver rights in respect of this document. The respective driver and property rights in respect of the statement of the document and property rights in respect of the statement of the document. The respective driver right and respective right and advect right and right and

Brisbane, Melbourne, Sydney www.rothelowman.com.au

rothelowman

24/10/2018 5:16:01 PM

							APARTI	MENTS				AMENITY			HOTEL ROOM	S	
LEVEL	RESIDENTIAL	PARKING	COMMERCIAL	HOTEL	TERRACE	No. 1 BEDS	No. 2 BEDS	No. 3 BEDS	No. 4 BEDS	TOTAL APARTMENTS	No. ADAPTABLE	No. LHA	No. SOLAR	No. HOTEL STANDARD	No. HOTEL ACCESSIBLE	No. HOTEL SELF CONTAINED	TOTAL HOTEL
BASEMENT 4	22 m ²	1860 m ²	0 m ²	0 m ²	0 m ²	0								-		0	-
BASEMENT 3	22 m ²	2503 m ²	0 m ²	0 m ²	0 m ²	0		-	0	-	-	-	-		-	0	
BASEMENT 2	21 m ²	2379 m ²	0 m ²	0 m ²	0 m ²	0			0						0	0	
BASEMENT 1	0 m ²	1596 m ²	130 m ²	358 m²	0 m ²	0			0							0	
GROUND	138 m ²	389 m²	43 m ²	634 m ²	0 m²	0	0	0	0	0	0			0	0	0	
EVEL 1	0 m ²	1175 m ²	10 m ²	379 m²	0 m²	0	0	0	0	0	0	0	0	0	0	0	
EVEL 2	0 m ²	1149 m ²	615 m ²	80 m²	0 m²	0	0	0	0	0	0	0	0	0	0	0	
EVEL 3	0 m ²	0 m²	1864 m²	0 m²	13 m²	0	0	0	0	0	0	0	0	0	0	0	
EVEL 4	0 m ²	0 m²	1830 m²	0 m²	24 m²	0	0	0	0	0	0	0	0	0	0	0	
EVEL 5	0 m ²	0 m²	0 m²	1165 m ²	14 m²	0	0	0	0	0	0	0	0	25	2	1	2
EVEL 6	0 m ²	0 m²	0 m²	1162 m ²	0 m²	0	0	0	0	0	0	0	0	25	2	1	2
EVEL 7	0 m ²	0 m²	0 m²	1162 m ²	0 m²	0	0	0	0	0	0	0	0	25	2	1	2
EVEL 8	0 m ²	0 m²	0 m²	1097 m ²	0 m²	0	0	0	0	0	0	0	0	28	0	1	2
EVEL 9	640 m ²	0 m²	0 m²	0 m²	291 m²	0	0	0	0	0	0	0	0	0	0	0	
EVEL 10	628 m²	0 m²	0 m²	0 m²	82 m²	4	0	4	0	8	0	4	7	0	0	0	
EVEL 11	643 m ²	0 m²	0 m²	0 m²	84 m²	0	8	0	0	8	1	0	6	0	0	0	
EVEL 12	643 m ²	0 m²	0 m²	0 m²	84 m²	0	8	0	0	8	1	0	6	0	0	0	
EVEL 13	643 m ²	0 m²	0 m²	0 m²	84 m²	0	8	0	0	8	1	0	6	0	0	0	
EVEL 14	643 m ²	0 m²	0 m²	0 m²	84 m²	0	8	0	0	8	1	0	6	0	0	0	
EVEL 15	628 m²	0 m²	0 m²	0 m²	82 m²	4	0	4	0	8	0	4	7	0	0	0	
EVEL 16	643 m²	0 m²	0 m²	0 m²	84 m²	0	8	0	0	8	1	0	6	0	0	0	
EVEL 17	643 m²	0 m²	0 m²	0 m²	84 m²	0	8	0	0	8	1	0	6	0	0	0	
EVEL 18	643 m²	0 m²	0 m²	0 m²	84 m²	0	8	0	0	8	1	0	6	0	0	0	
EVEL 19	643 m²	0 m²	0 m²	0 m²	84 m²	0	8	0	0	8	1	0	6	0	0	0	
EVEL 20	628 m ²	0 m ²	0 m ²	0 m²	82 m²	4	-		0	-					-	0	
EVEL 21	643 m ²	0 m ²	0 m ²	0 m²	84 m²	0	-	0	0			-			-	0	
EVEL 22	643 m ²	0 m²	0 m²	0 m²	84 m²	0	°		0			-				0	
EVEL 23	643 m²	0 m ²	0 m ²	0 m²	84 m²	0			0			-			-	0	
EVEL 24	643 m²	0 m²	0 m ²	0 m²	84 m²	0			0			-			-	0	
EVEL 25	628 m ²	0 m²	0 m ²	0 m²	82 m²	4	0		0	Ű			7			0	
EVEL 26	643 m ²	0 m²	0 m ²	0 m²	84 m²	0	-	0	0			v			-	0	
EVEL 27	643 m ²	0 m²	0 m ²	0 m²	84 m²	0			0	-		-			-	0	
EVEL 28	643 m ²	0 m ²	0 m ²	0 m²	84 m²	0		0	0	-	1				-	0	
EVEL 29	643 m ²	0 m ²	0 m ²	0 m ²	84 m ²	0			0						-	0	
EVEL 30	628 m ²	0 m ²	0 m ²	0 m ²	82 m²	4	-		0						-		
EVEL 31	643 m ²	0 m ²	0 m ²	0 m ²	84 m²	0		-	0	-		-	-		-	0	
EVEL 32	667 m ²	0 m ²	0 m ²	0 m ²	80 m ²	0			1	-					-	0	
EVEL 33	667 m ²	0 m ²	0 m ²	0 m ²	80 m ²	0			1	-		-			-	0	
LEVEL 34	667 m ²	0 m ²	0 m ²	0 m ²	80 m ²	0	-	0	1	-					-	0	
LEVEL 35	0 m ²	0 m ²	0 m ²	342 m ²	381 m²	0	-	0							-	0	
	16908 m ²	11050 m ²	4492 m ²	6378 m ²	2803 m ²	20		20	3		20	20	152	103	6	4	1
						1 BED	2 BED	3 BED	4 BED	TOTAL			SOLAR COMPLIANT				
						10%	78%	10%	2%	100%			78.4%				

GFA Gross Floor Area has been calculated as per the definition in the relevant Local Environment Plan (LEP) as shown in the GFA diagrams

SOLAR ACCESS Living rooms and private open spaces of at least 70% of apartments in a building receive a minimum of 2 hours direct auright between 8m and 3pm at mid winter in the Sydney Metopolitan Area and in the Newcastle and Wollongong local government areas.

CROSS VENTILATION Apartments at ten storeys or greater are deemed to be cross ventilated only if any encl levels allows adequate matural ventilation and cannot be fully enclosed.

ADAPTABLE UNITS A minimum of 10% of all apartments are to be designed to be capable of adaption for access by people with all levels of mobility. In accounters with the Australian Apaptable Housing Standard (AS 4296-1996), which includes (ore adaption' design details to ensure visibability is achieved.

UNIVERSAL DESIGN 20% of the total apartments in a development to incorporate the Liveable Housing Guideline's Silver Level Universal Design features

DISCLAIMER Areas are not to be used for the purpose of lease or sale agreements. The information in these schedules is believed formed at the time of printing. Areas are generally measured in accordance with the Property Council of Australia Method of Measurement, unless otherwise noted above.

8	1	0	6	0	0	0	0
8	0	4	7	0	0	0	0
8	1	0	6	0	0	0	0
8	1	0	6	0	0	0	0
8	1	0	6	0	0	0	0
8	1	0	6	0	0	0	0
8	0	4	7	0	0	0	0
8	1	0	6	0	0	0	0
6	1	0	5	0	0	0	0
6	1	0	5	0	0	0	0
6	1	0	5	0	0	0	0
0	0	0	0	0	0	0	0

CAR PARKING PROVISION

1

1.5

0.1

Commercial 1 / 100sqm 45

1 / 100sqm 67

1 bed

2 bed

3+ bed

Visitor

Hotel

Total

Resident

Rates

Reqd.

206

20

338

CARPARKS ACCESSIBLE FLOOR INCL. IN MOTORCYCLE / RESIDENTIAL LEVEL RESIDENTIAL VISITOR COMMERCIAL HOTEL CARESHARE TOTAL SERVICE CARWASH SCOOTER PARKS BICYCLE PARKS TOTAL STORES BASEMENT 4 66 0 0 0 66 Λ 43 34 BASEMENT 84 0 0 0 85 0 25 77 3 BASEMENT 53 20 0 0 73 18 31 38 1 BASEMENT ' 0 46 23 0 45 0 3 0 LEVEL 1 0 0 0 26 33 8 2 4 3 LEVEL 2 35 26 0 0 0 35 0 2 0 1 0 TOTAL 203 20 45 61 3 338 26 5 19 156 149

CAR SHARE SPACES TO MAKE UP THE SHORTFALL IN CAR PARKING SPACES SHARE CARS SPACES ARE PROPOSED AS INDICATED ON PLANS

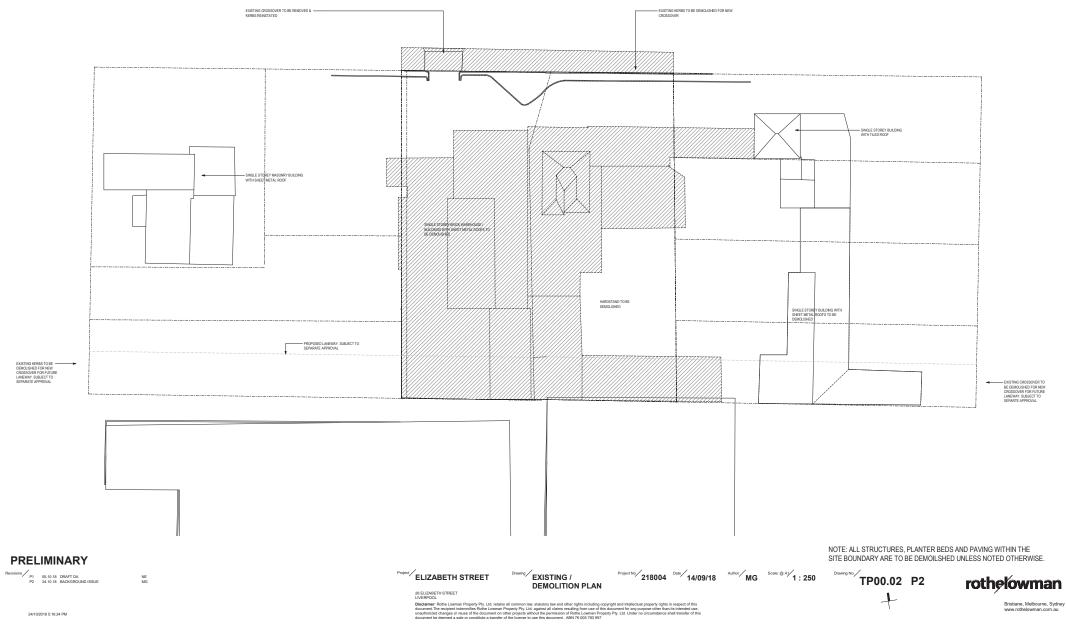
NE MG

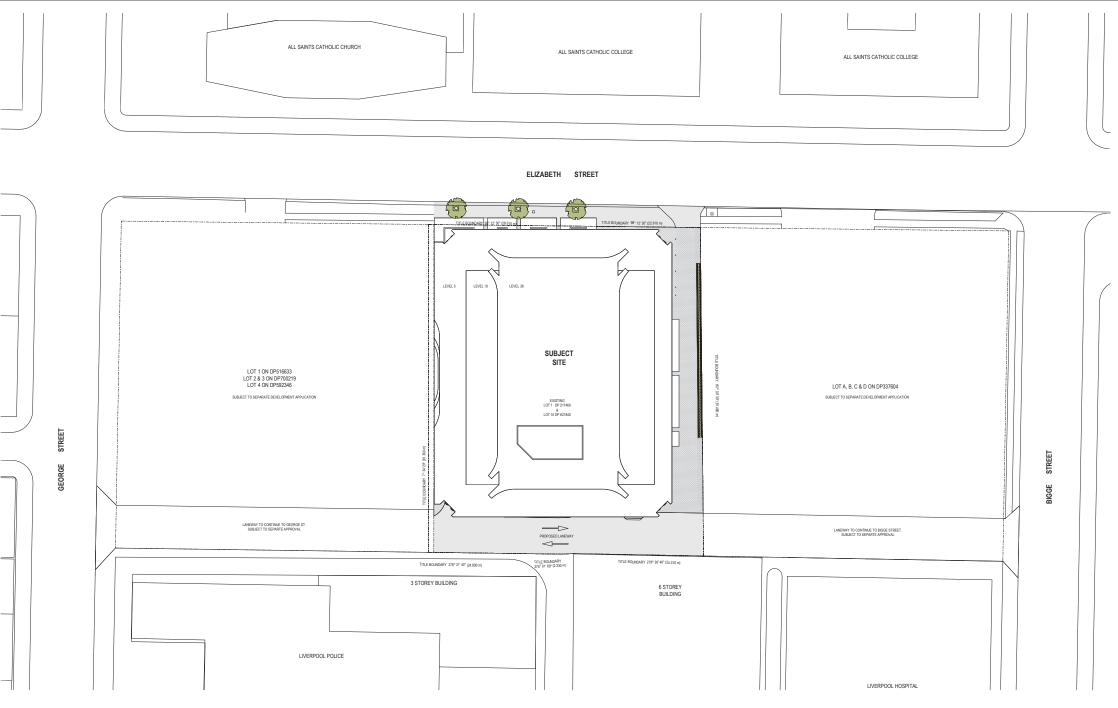
PRELIMINARY

Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE

Declarance: Role Lowano Ropenty Pp, Lia testara al commo lau, statutory lau and other rights including copylight and intellectual property rights in a statutory of the document. The response information Role Lowano Ropenty Pp, Lia Langent al distance advantary Campany Campa Campany Cam

MOTORBIKE	MOTORBIKE PROVISION									
	Rates	Reqd.								
Residential	0.05 x car	12								
Commercial	0.05 x car	3								
Hotel	0.05 x car	4								
Total		19								


BICYCLE PR	PROVISION					
	Rates	Reqd.				
Residential	1 / 200sqm	99				
Commercial	1 / 200sqm	23				
Hotel	1 / 200sqm	34				
Total		156				


Project No. 218004 Date 14/09/18 Author YY Scale @ AV 1:200 TP00.01 P2

SITE AREA	PERMISSIBLE FSR	MAXIMUM GFA
3082m ²	1:10	30,820m²

PROGRAM GFA COMMERCIAL 4500 m² HOTEL 6700 m² RESIDENTIAL 19620 m² 30820 m²

rothelowman

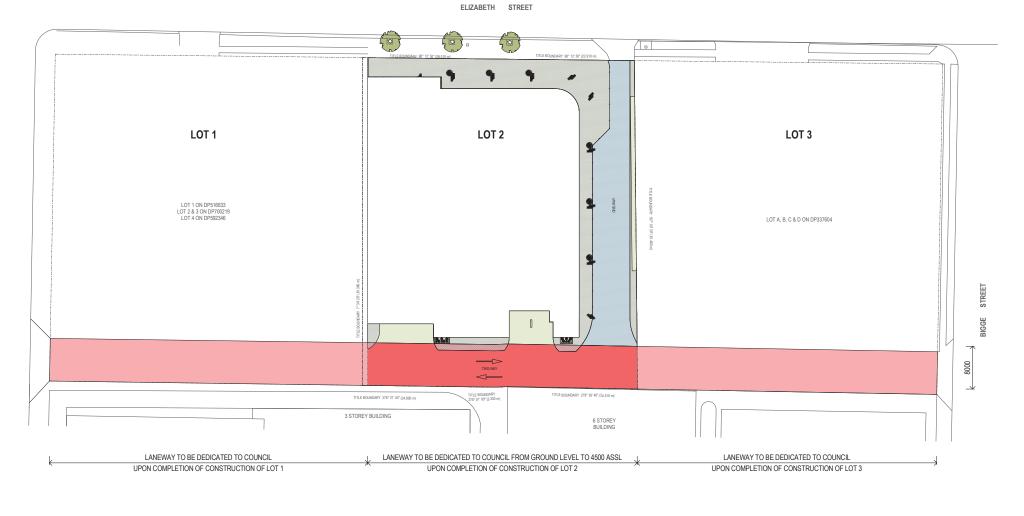
PRELIMINARY

 Revisions
 P4
 31.08.18
 ISSUE FOR INFORMATION

 P5
 10.09.18
 BACKGROUND ISSUE

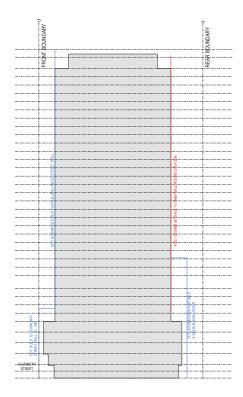
 P6
 20.09.18
 ISSUE FOR INFORMATION

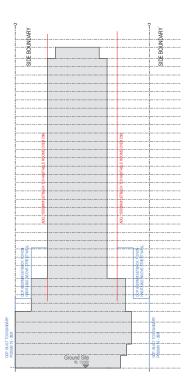
 P7
 05.101.8
 BACKGROUND ISSUE


 P8
 24.10.18
 BACKGROUND ISSUE

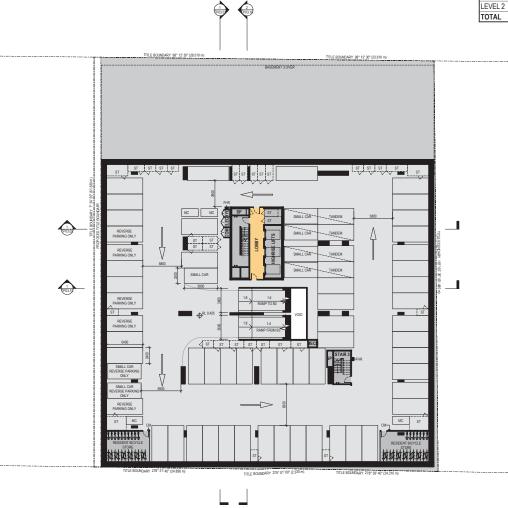
MG NE MG NE MG Project LIZABETH STREET PROPOSED SITE PLAN Project Ne 218004 Date 14/09/18 Meter MG Scate @ M 1:250 Date No. 7EP00.03 P8 TP00.03 P8

24/10/2018 5:16:35 PM

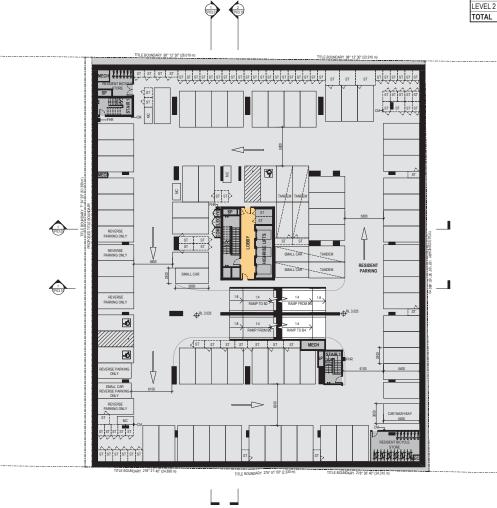



24/10/2018 5:16:39 PM

GEORGE STREET


CONSTRAINTS SECTION 3 SIDE - ADG&DCP

PRELIMINARY


			(CARPARKS			
LEVEL	RESIDENTIAL	VISITOR	COMMERCIAL	HOTEL	CARESHARE	FLOOR TOTAL	ACCESSIBLE INCL. IN TOTAL
BASEMENT 4	66	0	0	0	0	66	0
BASEMENT 3	84	0	0	0	0	85	3
BASEMENT 2	53	20	0	0	0	73	18
BASEMENT 1	0	0	45	0	0	46	1
LEVEL 1	0	0	0	26	3	33	2
LEVEL 2	0	0	0	35	0	35	2
TOTAL	203	20	45	61	3	338	26

			(CARPARKS			
LEVEL	RESIDENTIAL	VISITOR	COMMERCIAL	HOTEL	CARESHARE	FLOOR TOTAL	ACCESSIBLE INCL. IN TOTAL
BASEMENT 4	66	0	0	0	0	66	0
BASEMENT 3	84	0	0	0	0	85	3
BASEMENT 2	53	20	0	0	0	73	18
BASEMENT 1	0	0	45	0	0	46	1
LEVEL 1	0	0	0	26	3	33	2
LEVEL 2	0	0	0	35	0	35	2
TOTAL	203	20	45	61	3	338	26

 Revisions
 P15
 20.08.18
 ISSUE FOR INFORMATION

 P16
 26.06.18
 ISSUE FOR INFORMATION

 P17
 04.10.16
 ISSUE FOR INFORMATION

 P18
 05.10.16
 ISSUE FOR INFORMATION

 P19
 24.10.16
 BACKGROUND ISSUE

ABBREVIATIONS LEGEND

COM CM

EL EOT EX FHR HY HYD IC M MECH

MG MG MG NE MG NS LEGEND COMMUNCATIONS SERVICES COMMUNCATIONS SERVICES ELECTRICAL SERVICES ELECTRICAL SERVICES ELECTRICAL SERVICES END OF TRP FACILITIES FIRE EXTINGUISHER FIRE HOSE REEL HYDBALIUE SERVICES INTERCOM (CARD READER MECHANICAL SERVICES

M MC OSD RF ST SP VD WL MECHANICAL RISERS MECHANICAL SERVICES MOTORCYCLE PARK ON SITE DETENTION REFUSE CHUTE STORE STARE STARE PRESSURISATION VEHICLE WARNING LIGHT COLOUR FILL LEGEND

RESIDENTIAL

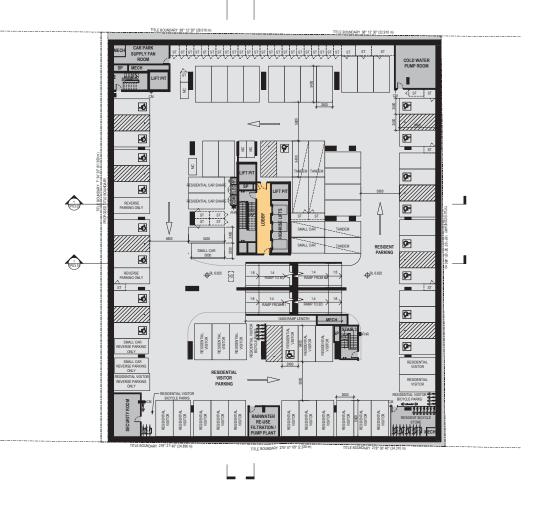
HOTEL

COMMERCIAL

ELIZABETH STREET

26 ELIZABETH STREET LIVERPOOL

24/10/2018 5:16:59 PM


Discilatore: Rohe Lamon Properly Pp, Lid valani al acomon las, statutory las and other ophis including copyright and intelectual properly right and intellectual properly right and rintellectual and right and ri

 Drawing
 BASEMENT 3 PLAN
 Project No.
 218004
 Date
 14/09/18
 Author
 MG
 Scale @ A/
 1 : 200
 Drawing No.
 TP01.01
 P19

rothelowman Brisbane, Melbourne, Sydney www.rothelowman.com.au

+

			(CARPARKS			
LEVEL	RESIDENTIAL	VISITOR	COMMERCIAL	HOTEL	CARESHARE	FLOOR TOTAL	ACCESSIBLE INCL. IN TOTAL
BASEMENT 4	66	0	0	0	0	66	0
BASEMENT 3	84	0	0	0	0	85	3
BASEMENT 2	53	20	0	0	0	73	18
BASEMENT 1	0	0	45	0	0	46	1
LEVEL 1	0	0	0	26	3	33	2
LEVEL 2	0	0	0	35	0	35	2
TOTAL	203	20	45	61	3	338	26

MG MG MG NE MG ARREVIATIONS | EGEND

COM CM

EL EOT EX FHR HY HYD IC M MECH 45 LEGEND COMMUNCATIONS SERVICES COMMUNCATIONS SERVICES ELECTRICAL SERVICES ELECTRICAL SERVICES END OF TAP FACILITIES FIRE EXTINUISHER FIRE EXTINUISHER FIRE EXTINUISHER FIRE EXTINUISHER HYDRAULUE SERVICES INTERCOM / CARD READER MECHANICAL SERVICES

M MECH MC OSD RF ST SP VD WL COLOUR FILL LEGEND

HOTEL

COMMERCIA

RESIDENTIA

ELIZABETH STREET

26 ELIZABETH STREET LIVERPOOL

MECHANICAL RISERS MECHANICAL SERVICES MOTORCYCLE PARK ON SITE DETENTION REFUSE CHUTE STORE STARE STARE PRESSURISATION VEHICLE WARNING LIGHT

BASEMENT 2 PLAN Project No. 218004 Date 14/09/18 Autor MG Scale @ A 1 : 200 Deaving No. TP01.02 P20

rothelowman Brisbane, Melbourne, Sydney www.rothelowman.com.au

			(CARPARKS			
LEVEL	RESIDENTIAL	VISITOR	COMMERCIAL	HOTEL	CARESHARE	FLOOR TOTAL	ACCESSIBLE INCL. IN TOTAL
BASEMENT 4	66	0	0	0	0	66	0
BASEMENT 3	84	0	0	0	0	85	3
BASEMENT 2	53	20	0	0	0	73	18
BASEMENT 1	0	0	45	0	0	46	1
LEVEL 1	0	0	0	26	3	33	2
LEVEL 2	0	0	0	35	0	35	2
TOTAL	203	20	45	61	3	338	26

24/10/2018 5:17:09 PM

COLOUR FILL LEGEND

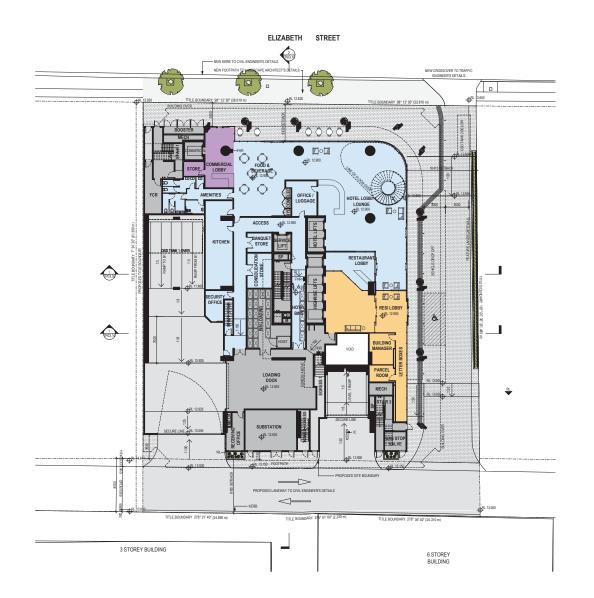
HOTEL

COMMERCIA

RESIDENTIA

ELIZABETH STREET

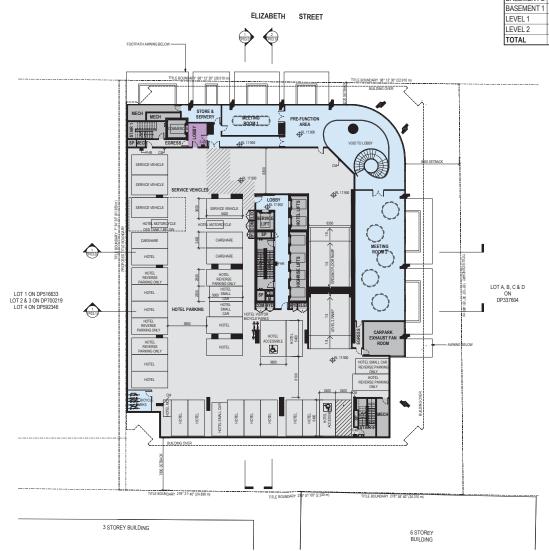
26 ELIZABETH STREET LIVERPOOL


ABBREVIATIONS | EGEND

COM CM

EL ELEC EOT EX FHR HY HYD IC M MECH MIS LEGEND COMMUNCATIONS SERVICES COMMUNCATIONS SERVICES ELECTRICAL SERVICES ELECTRICAL SERVICES END OF THP FACILITIES FIRE EXTINUISHER FIRE HOSE REFLE HYDRAULIC RISERS INTERCOM / CARD READER MECHANICAL SERVICES

MG MG MG NE MG Desiring BASEMENT 1 PLAN Project No. 218004 Date 14/09/18 Addref MG Scale @ Af 1 : 200 TP01.03 P20

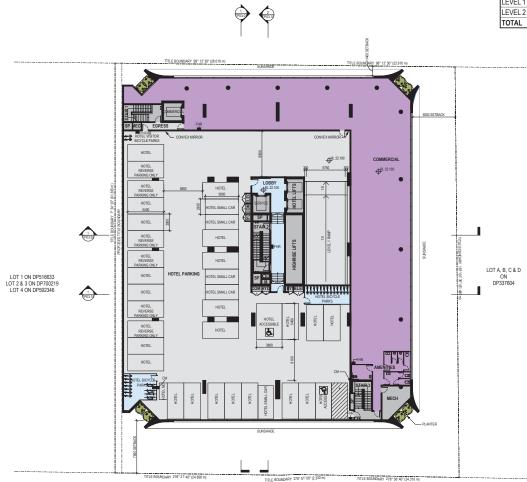

rothelowman Brisbane, Melbourne, Sydney www.rothelowman.com.au

PRELIMINARY

			(CARPARKS			
LEVEL	RESIDENTIAL	VISITOR	COMMERCIAL	HOTEL	CARESHARE	FLOOR TOTAL	ACCESSIBLE INCL. IN TOTAL
BASEMENT 4	66	0	0	0	0	66	0
BASEMENT 3	84	0	0	0	0	85	3
BASEMENT 2	53	20	0	0	0	73	18
BASEMENT 1	0	0	45	0	0	46	1
LEVEL 1	0	0	0	26	3	33	2
LEVEL 2	0	0	0	35	0	35	2
TOTAL	203	20	45	61	3	338	26

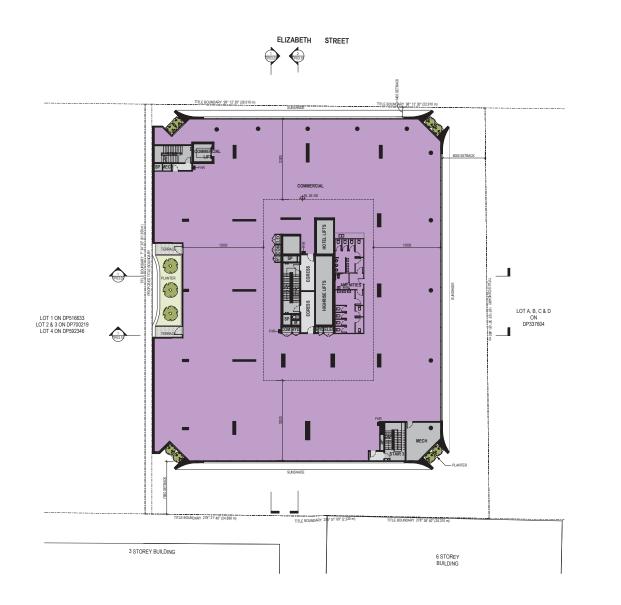
 Revisions
 P15
 10.09.18
 BACKGROUND ISSUE

 P16
 20.09.18
 ISSUE FOR INFORMATION

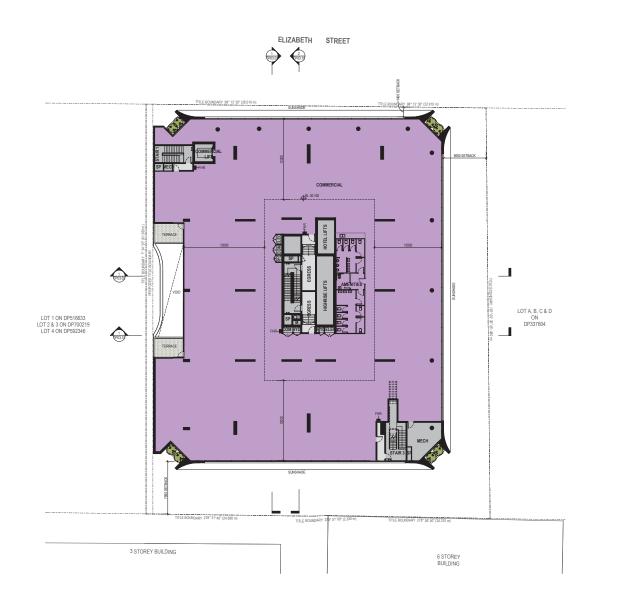

 P17
 04.10.18
 ISSUE FOR INFORMATION

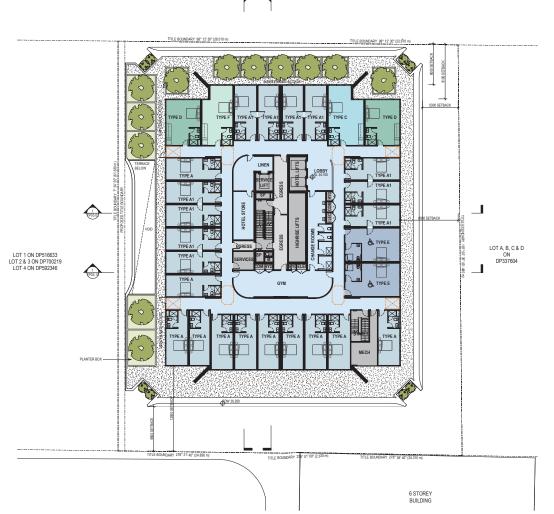
 P18
 05.10.18
 DRAFT DA

 P19
 24.10.18
 BACKGROUND ISSUE

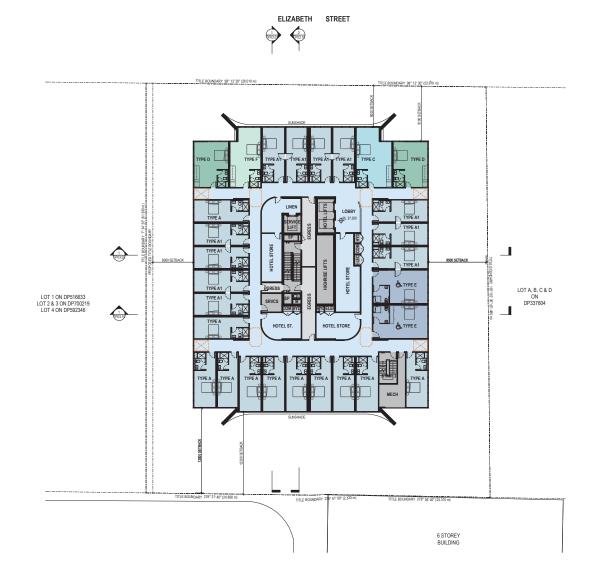


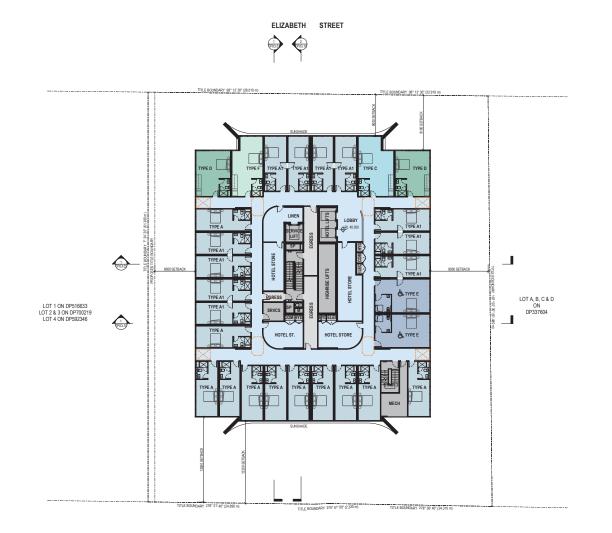
			(CARPARKS	;		
LEVEL	RESIDENTIAL	VISITOR	COMMERCIAL	HOTEL	CARESHARE	FLOOR TOTAL	ACCESSIBLE INCL. IN TOTAL
BASEMENT 4	66	0	0	0	0	66	0
BASEMENT 3	84	0	0	0	0	85	3
BASEMENT 2	53	20	0	0	0	73	18
BASEMENT 1	0	0	45	0	0	46	1
LEVEL 1	0	0	0	26	3	33	2
LEVEL 2	0	0	0	35	0	35	2
TOTAL	203	20	45	61	3	338	26

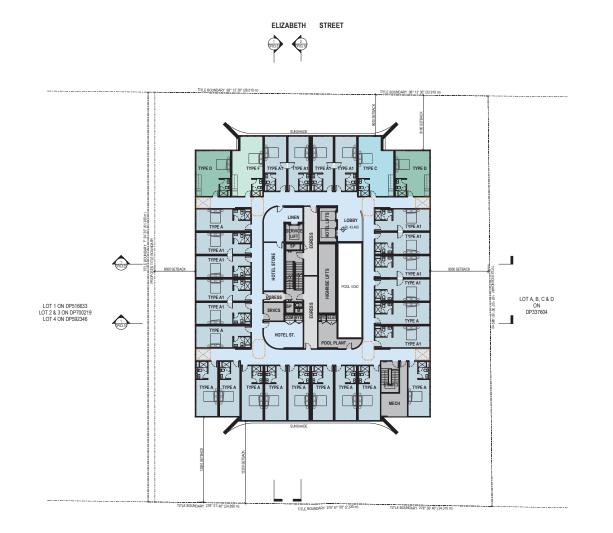

ELIZABETH STREET

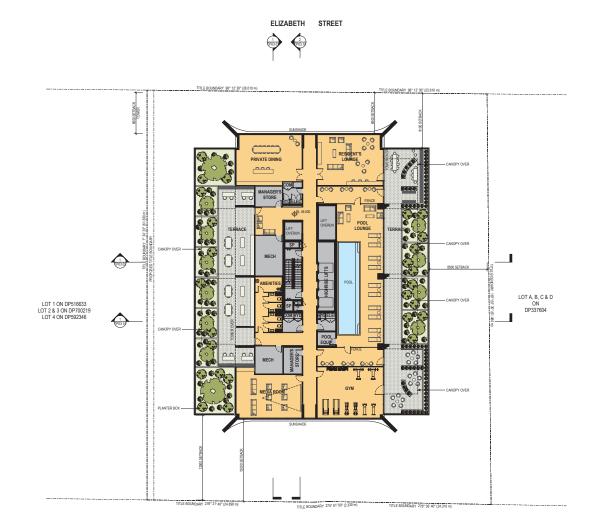


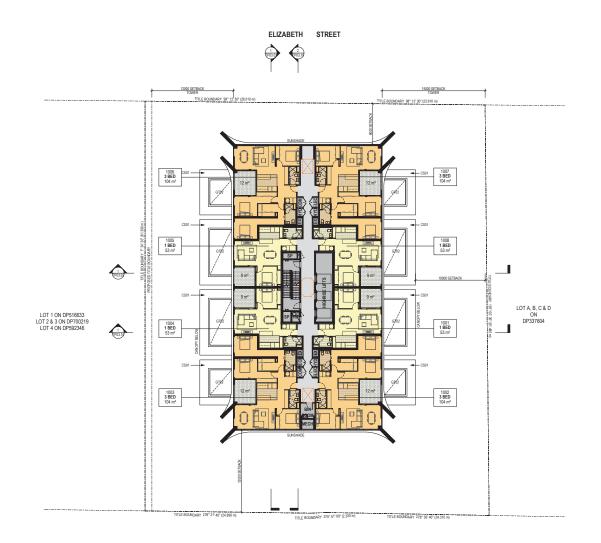
PRELIMINARY

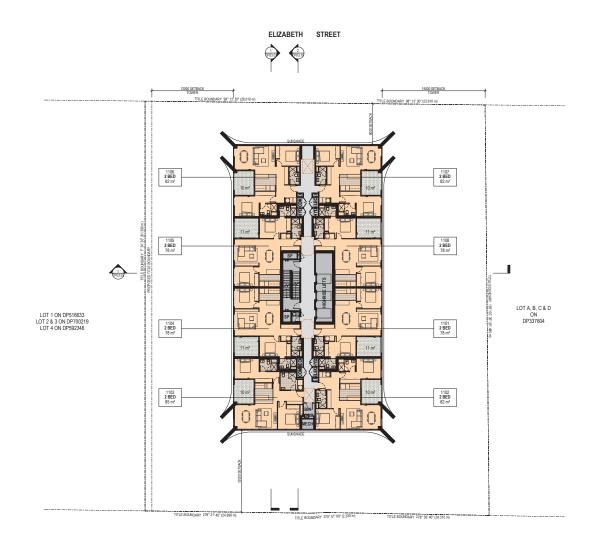


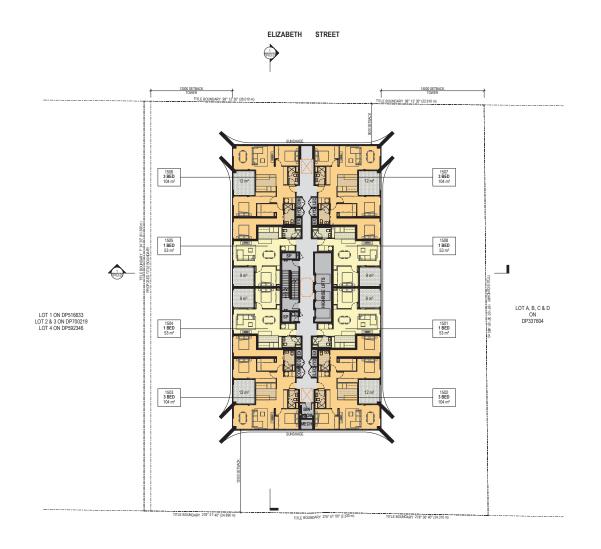



ELIZABETH STREET


PRELIMINARY												
Revisions P12 10.06.16 BACKGROUND ISSUE P13 26.69.16 ISSUE FOR INFORMATION P14 04.10.18 ISSUE FOR INFORMATION P15 65.10.16 DEATEDAT P16 24.10.18 BACKGROUND ISSUE	NE MG NE MG	ABBREVI COM EL ELEC EOT EX	ATIONS LEGEND COMMUNICATIONS SERVICES CONVEX MIRROR ELECTRICAL SERVICES ELECTRICAL SERVICES END OF TRIP FACILITIES FIRE EXTINGUISHER	M MECH MC OSD RF ST	MECHANICAL RISERS MECHANICAL SERVICES MOTORCYCLE PARK ON SITE DETENTION REFUSE CHUTE STORE	COLOUR FILL LEGEND COMMERCIAL RESIDENTIAL	Project ELIZABETH STREET 26 ELIZABETH STREET LIVERPOOL Disclaimer: Rothe Lowman Property Pty. Lid. rr	Drawing LEVEL 6 PLAN	Project No 218004 Date 14/09/18	Author MG Scale: @ A1 1 : 200	TP01.10 P16	rotholowman
24/10/2018 5:17:57 PM		FHR HY HYD IC M MECH	FIRE HOSE REFL HYDRAULIC RISERS HYDRAULIC SERVICES INTERCOM / CARD READER MECHANICAL RISERS MECHANICAL SERVICES	SP VD WL	STAIR PRESSURISATION VEHICLE DETECTOR IN SLAB VEHICLE WARNING LIGHT	HOTEL	document. The recipient indemnifies Rothe Lowr unauthorized changes or reuse of the document	man Property Pty. Ltd. against all claims resulting from use o	f this document for any purpose other than its intended use, Property Pty. Ltd. Under no circumstance shall transfer of this		l	unsuara, mesuouna, guney www.rothelowman.com.au

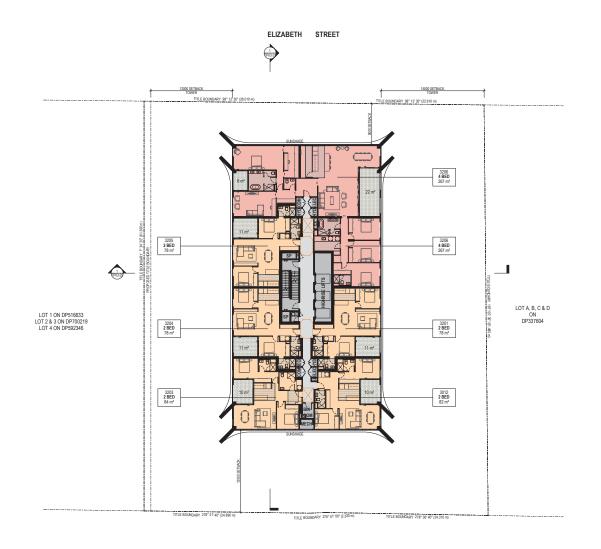


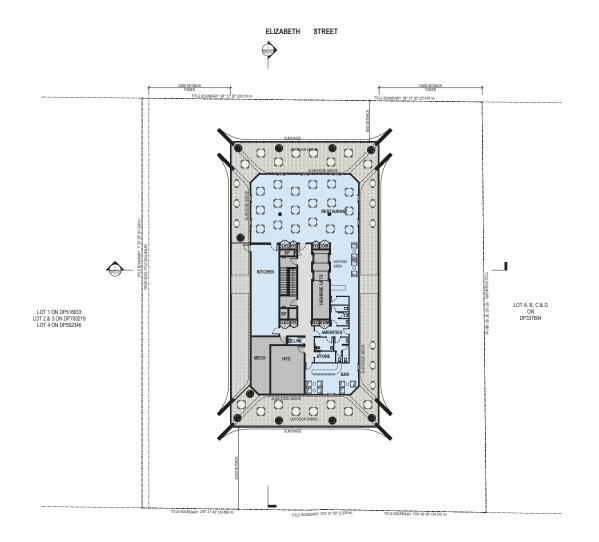


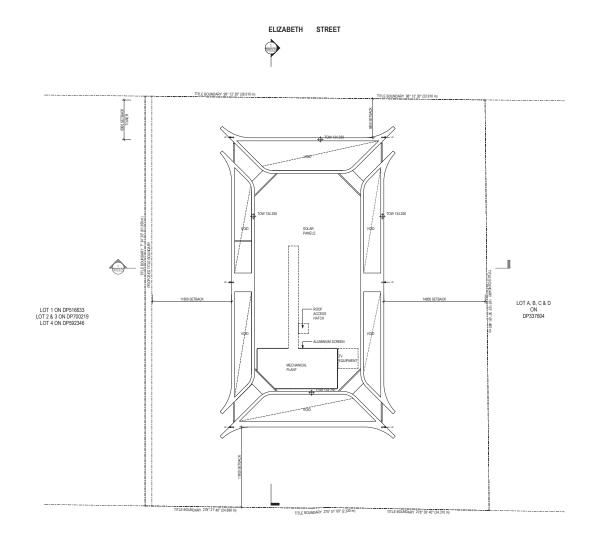


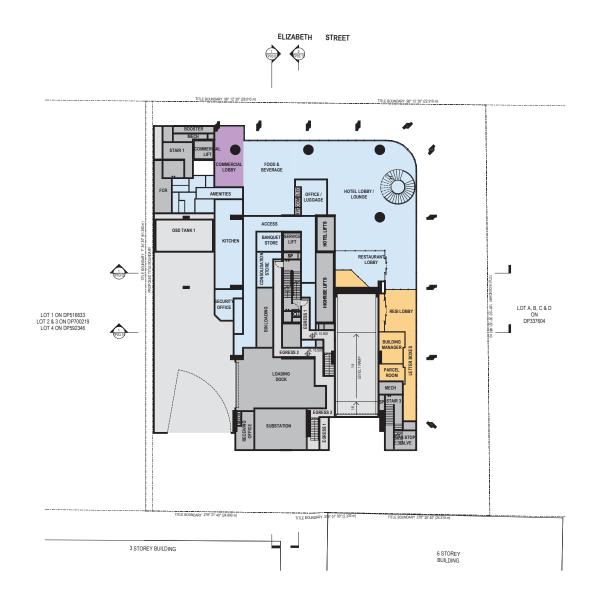
NOTE: ROOM NUMBERS FOR LEVEL 11 SHOWN

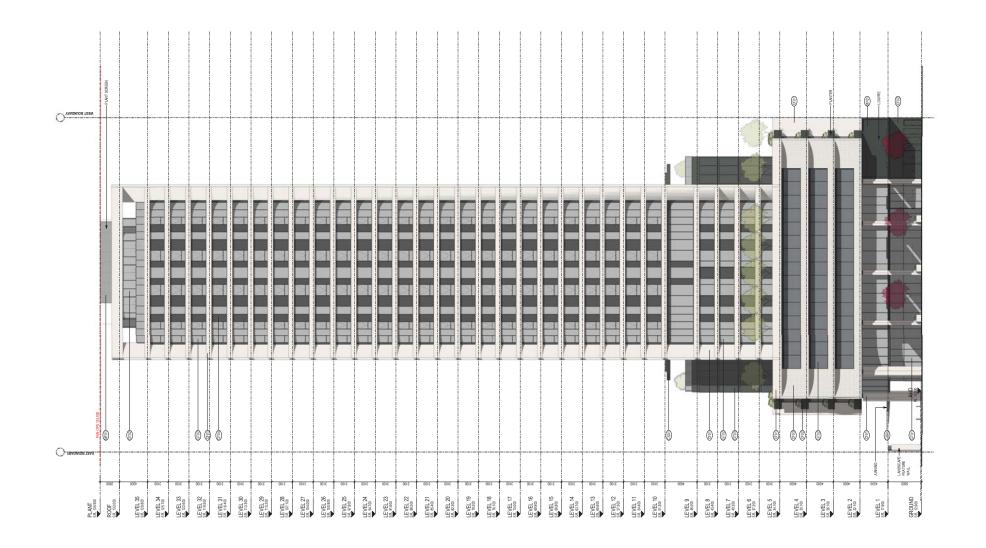
isions/	P8	10.09.18	BACKGROUND ISSUE
	P9	26.09.18	ISSUE FOR INFORMATION
	P10	04.10.18	ISSUE FOR INFORMATION
	P11	05.10.18	DRAFT DA
	P12	24.10.18	BACKGROUND ISSUE








NOTE: ROOM NUMBERS FOR LEVEL 32 SHOWN



 Revisions
 P4
 10.09.18
 BACKGROUND ISSUE

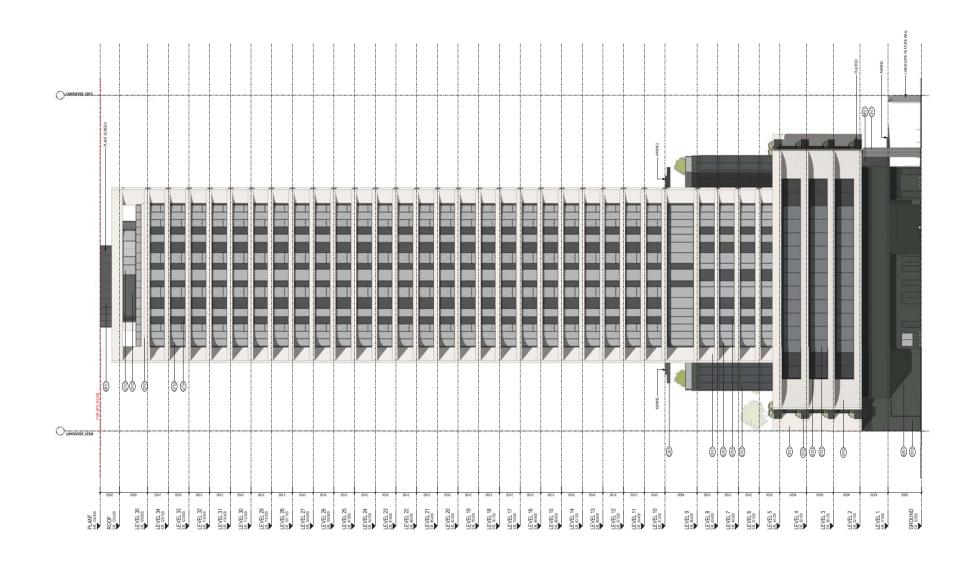
 P5
 26.09.18
 ISSUE FOR INFORMATION

 P6
 04.10.18
 ISSUE FOR INFORMATION

 P7
 05.10.18
 DRAFT DA

 P8
 24.10.18
 BACKGROUND ISSUE

MATERAL LEGEN OFII Construits Finith - Oursal OFII Construints Finith - Oursal OFII Printing Collegation Office Construction Finith - Oursal Office Construction - Oursal Office Con


NE MG MG NE MG

 Desire
 NORTH ELEVATION
 Project Ne
 218004
 Date
 14/09/18
 Author / YY
 Scale: @ At/
 1 : 200
 Desire No/
 TP02.01
 P8
 Project ELIZABETH STREET 26 ELIZABETH STREET LIVERPOOL Disclamer: Rohe Laman Rompet Pp, Lid extrine al commo law, statutory law and other rights including copyright and intellectual property rights in a related the counser. The record intermines Rohe Laman Roperty Pp, Lid against all claims reading from use of the accument for any pupore other han is intereded acu-unautorised changes or rease of the document on other projects without the permission of Rohe Laman Property Ph, Lid. Linder no circumstance shall transfer of the isso-counser to the encoder a sale or constitute a same of realment of the use this to counser. J AMR 76 007 839 With 2007 Phys. Lid. Linder no circumstance shall transfer of the isso-tance the demonstration of the acument on other projects without the permission of Rohe Laman Property Phy. Lid. Linder no circumstance shall transfer of the isso-counser to demonstrate a sale or constitute a same of the issoners to use this document. AMR 76 007 R39 With the permission of Rohe Laman Property Phy. Lid. Linder no circumstance shall transfer of the isso-

rothelowman

24/10/2018 5:19:55 PM

Brisbane, Melbourne, Sydney www.rothelowman.com.au

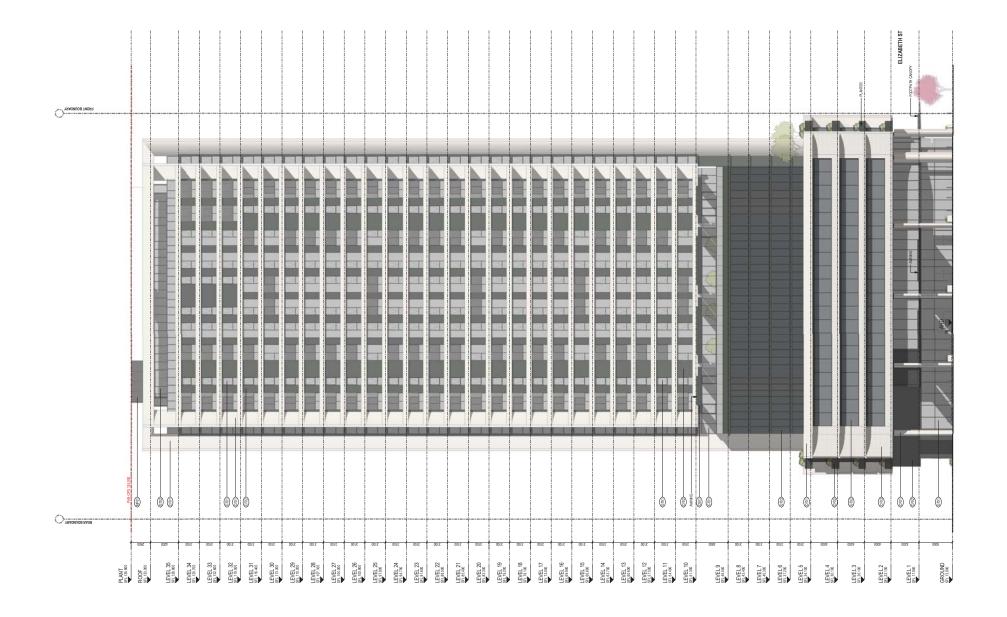
24/10/2018 5:20:39 PM

 Period
 10.09.18
 BACKGROUND ISSUE

 P9
 20.09.18
 ISSUE FOR INFORMATION

 P0
 64.10.18
 ISSUE FOR INFORMATION

 P7
 05.10.18
 DRAFT DA


 P8
 24.10.18
 BACKGROUND ISSUE

NE MG MG NE MG

rothelowman

24/10/2018 5:21:34 PM

 P4
 10.09.18
 BACKGROUND ISSUE

 P5
 26.09.18
 ISSUE FOR INFORMATION

 P6
 04.10.18
 ISSUE FOR INFORMATION

 P7
 05.10.18
 DRAFT DA

 P8
 24.10.18
 BACKGROUND ISSUE

NE MG MG NE MG

MATERIAL LEGEND
 CP01
 Camentous Finish - White

 CP02
 Camentous Finish - Namaal

 CP03
 Perkelikade Classifury / Pavakexatek Window Fishere Finish

 CP03
 Revelikade Classifury / Pavakexatek Window Fishere Finish

 CP03
 Galampi - Gay Tint

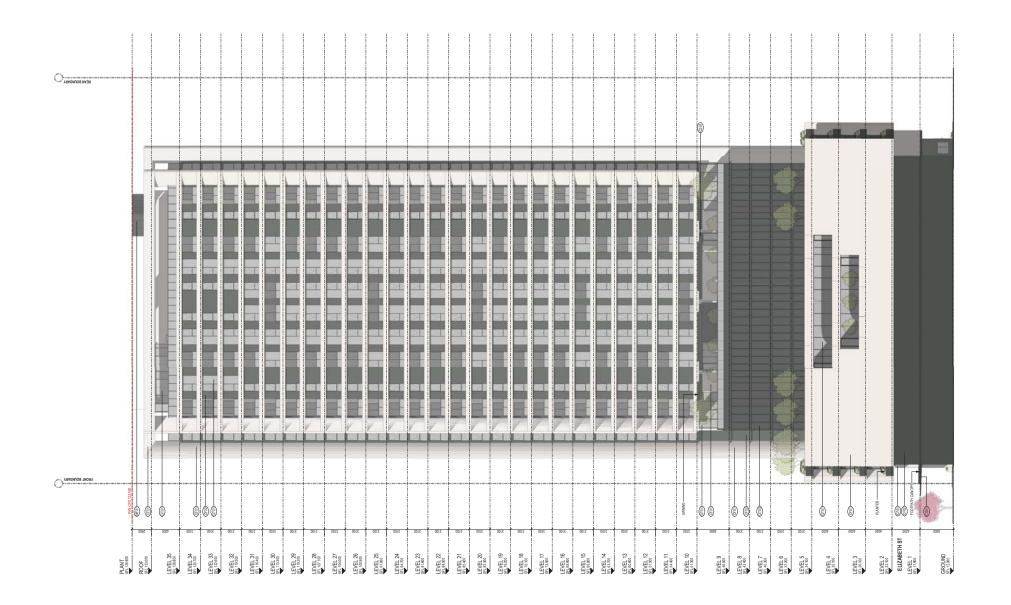
 CP03
 Galampi - Gay Tint

 CP03
 Galampi - Gay Tint

 CP04
 Galampi - Colour Stack Gaus

 Med Med Filmes - Chauread
 Med Med Filmes - Chauread

Project Nev 218004 Date 14/09/18 Author YY Scale @ A 1 : 200 TP02.03 P8 26 ELIZABETH STREET LIVERPOOL


Disclamer: Rohe Laman Rompet Pp, Lid extrine al commo law, statutory law and other rights including copyright and intellectual property rights in a related the counser. The record intermines Rohe Laman Roperty Pp, Lid against all claims reading from use of the accument for any pupore other han is intereded acu-unautorised changes or rease of the document on other projects without the permission of Rohe Laman Property Ph, Lid. Linder no circumstance shall transfer of the isso-counser to the encoder a sale or constitute a same of realment of the use this to counser. J AMR 76 007 839 With 2007 Phys. Lid. Linder no circumstance shall transfer of the isso-tance the demonstration of the acument on other projects without the permission of Rohe Laman Property Phy. Lid. Linder no circumstance shall transfer of the isso-counser to demonstrate a sale or constitute a same of the issoners to use this document. AMR 76 007 R39 With the permission of Rohe Laman Property Phy. Lid. Linder no circumstance shall transfer of the isso-

EAST ELEVATION

Project ELIZABETH STREET

Brisbane, Melbourne, Sydney www.rothelowman.com.au

24/10/2018 5:22:27 PM

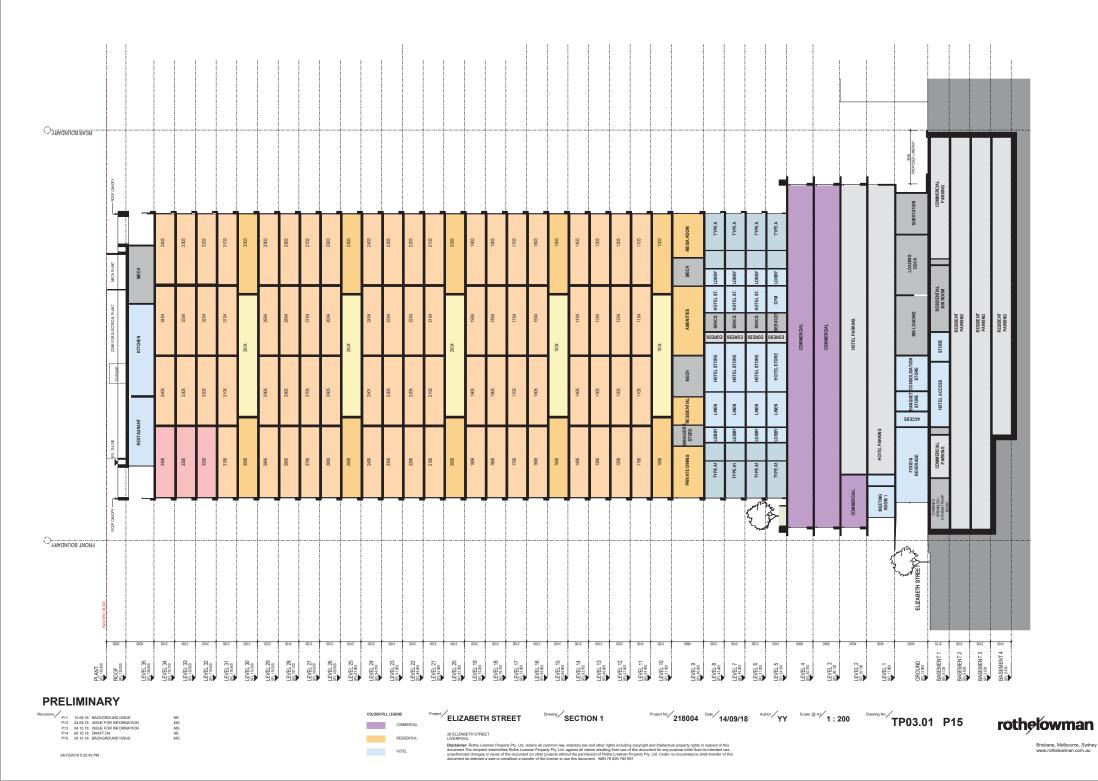
 isions
 P4
 10.09.18
 BACKGROUND ISSUE

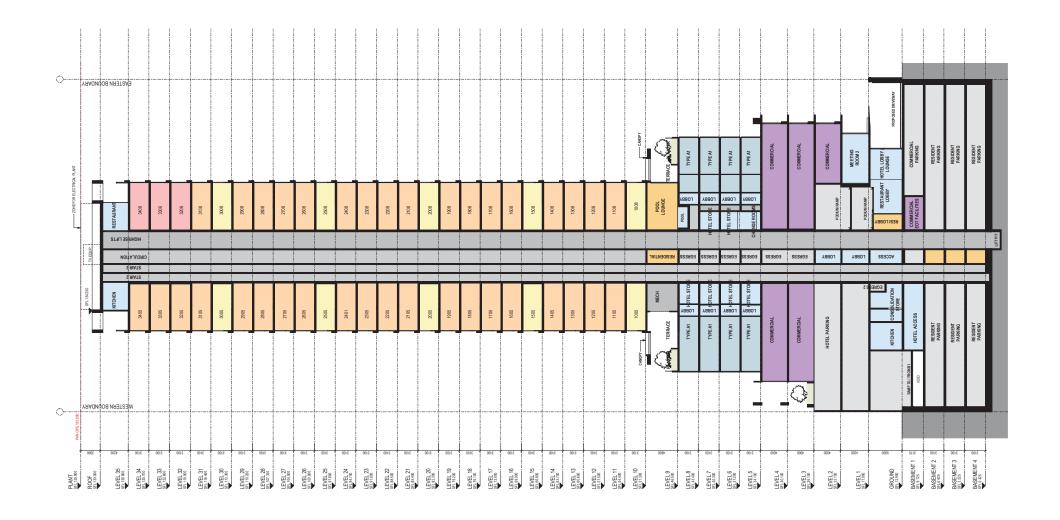
 P5
 26.09.18
 ISSUE FOR INFORMATION

 P6
 04.10.18
 ISSUE FOR INFORMATION

 P7
 05.10.18
 DRAFT DA

 P8
 24.10.18
 BACKGROUND ISSUE


NE MG MG NE MG

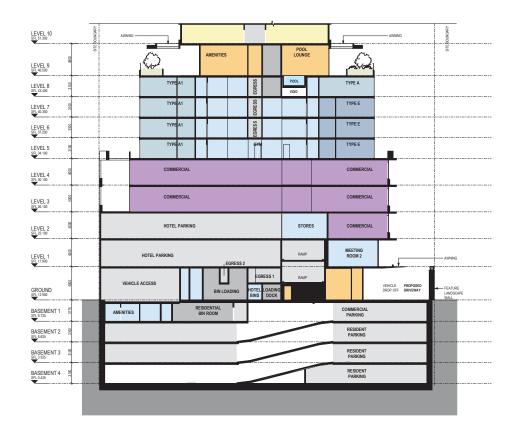


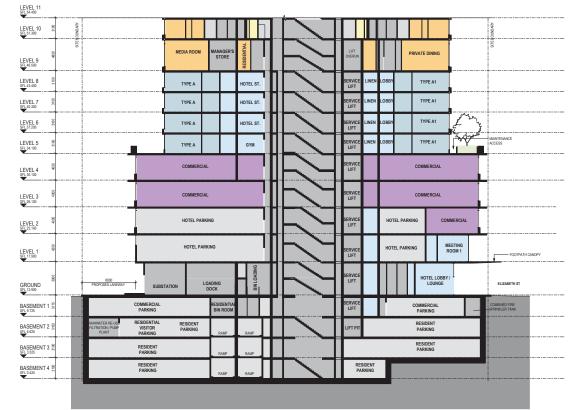
rothelowman

Brisbane, Melbourne, Sydney www.rothelowman.com.au

 P1
 04.10.18
 ISSUE FOR INFORMATION

 P2
 05.10.18
 DRAFT DA


 P3
 24.10.18
 BACKGROUND ISSUE

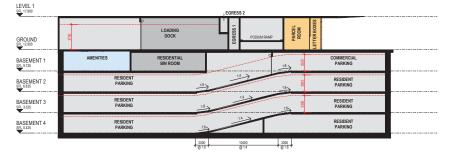

MG NE MG

 COLUME ILLEGEN
 Project
 Dawing
 SECTION 2
 Project No
 218004
 Math
 Math
 YY
 Said @ M
 TPO3.02
 P3<</th>
 FOID (Columna)

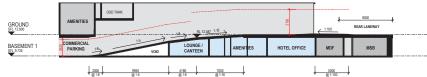
 COLUME RULE
 Colume RULE

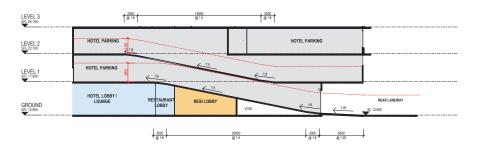
24/10/2018 5:23:29 PM

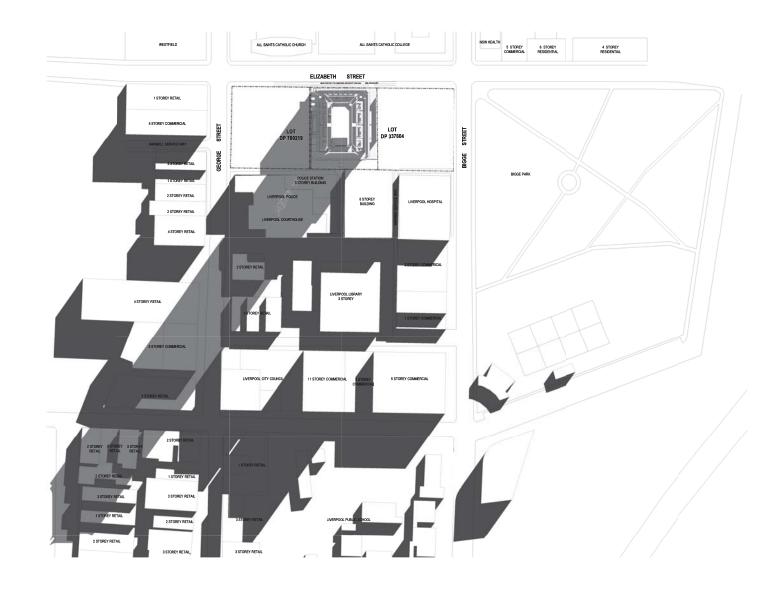
1 SECTION 3 (P01.00 SCALE 1: 200


PRELIMINARY Project No. 218004 Date 19/07/18 Author YY Scale @ A 1 : 200 TP03.12 P7 P3 10.09.18 BACKGROUND ISSUE P4 21.09.18 ISSUE FOR INFORMATION P5 04.10.18 ISSUE FOR INFORMATION P6 05.10.18 ISSUE FOR INFORMATION P6 05.10.18 ISSUE FOR INFORMATION P7 24.10.18 BACKGROUND ISSUE COLOUR FILL LEGEND RAMP SECTIONS ELIZABETH STREET NE MG MG NE MG COMMERCIAL 26 ELIZABETH STREET LIVERPOOL RESIDENTIA Discilarer: Rohe Lamme Roendy Pp, Lid valaria al common law, statutory law and other ophila incidinali propriety) and intelescular property rights in an electronic the recognition of the statutory of the statut HOTEL

rothelowman

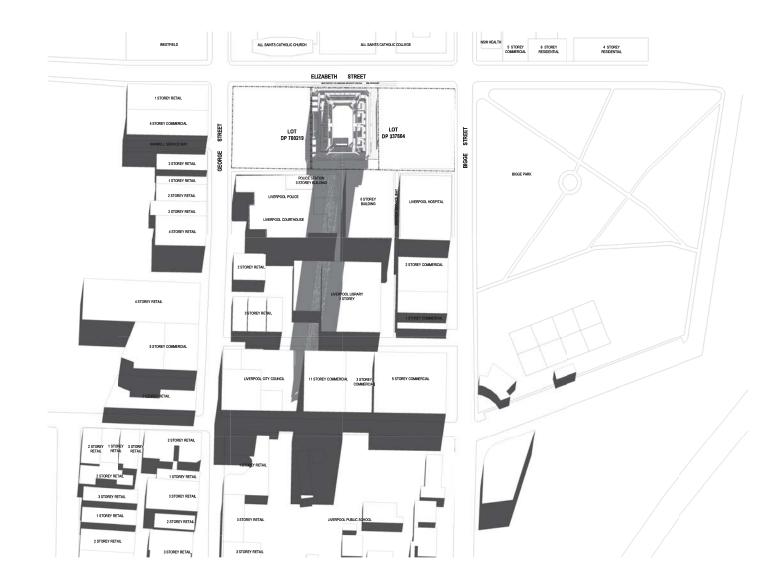

Brisbane, Melbourne, Sydney www.rothelowman.com.au


24/10/2018 5:23:46 PM



Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE

NE MG

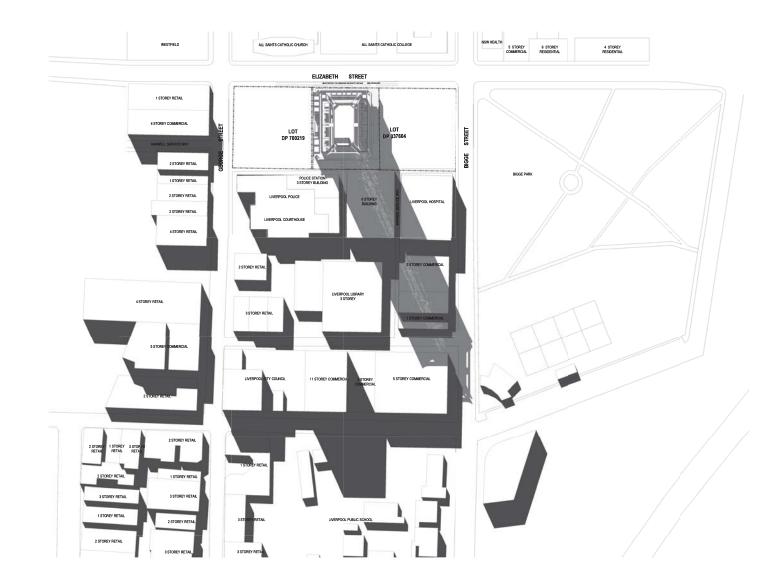


Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE

NE MG

Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE

NE MG

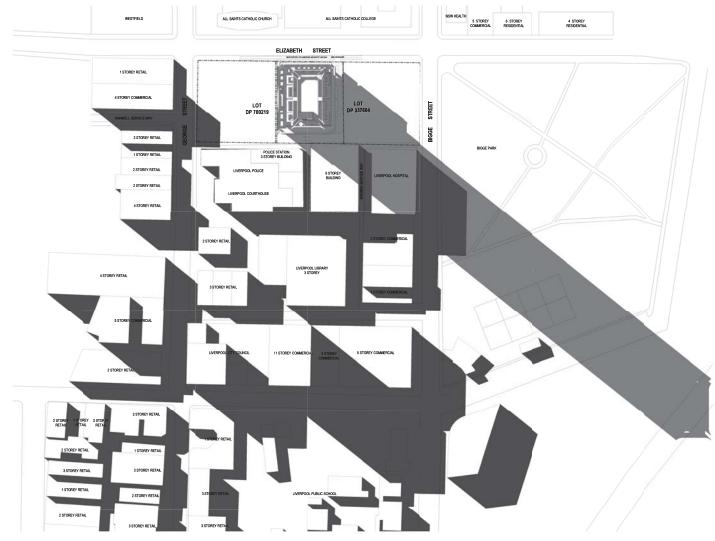

24/10/2018 10:45:24 AM

Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE

NE MG

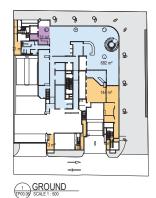
Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE

NE MG

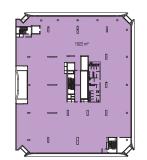


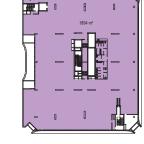
Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE

NE MG


24/10/2018 10:46:37 AM

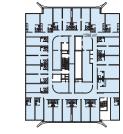
WINTER SOLSTICE - 3PM





2 LEVEL 1 TP00.06 SCALE 1 : 500

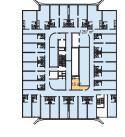
3 LEVEL 4


GF	A
LEVEL	AREA
GROUND	919 m ²
LEVEL 1	386 m²
LEVEL 2	709 m ²
LEVEL 3	1922 m ²
LEVEL 4	1894 m ²
LEVEL 5	1298 m ²
LEVEL 6	1298 m ²
LEVEL 7	1298 m ²
LEVEL 8	1303 m ²
LEVEL 9	706 m ²
LEVEL 10	749 m ²
LEVEL 11	746 m²
LEVEL 12	746 m ²
LEVEL 13	746 m ²
LEVEL 14	746 m ²
LEVEL 15	749 m²
LEVEL 16	746 m ²
LEVEL 17	746 m ²
LEVEL 18	746 m ²
LEVEL 19	746 m²
LEVEL 20	749 m²
LEVEL 21	746 m ²
LEVEL 22	746 m ²
LEVEL 23	746 m ²
LEVEL 24	746 m²
LEVEL 25	749 m²
LEVEL 26	746 m²
LEVEL 27	746 m²
LEVEL 28	746 m²
LEVEL 29	746 m²
LEVEL 30	749 m²
LEVEL 31	746 m²
LEVEL 32	756 m²
LEVEL 33	756 m ²
LEVEL 34	756 m²
LEVEL 35	386 m²
TOTAL	30820 m ²

GEA


PROGRAM	GFA
COMMERCIAL	4500 m²
HOTEL	6700 m ²
RESIDENTIAL	19620 m ²
	30820 m²

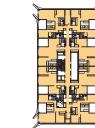
10 LEVEL 5 (P00.06 SCALE 1 : 500



14 LEVEL 6 TP00.06 SCALE 1 : 500

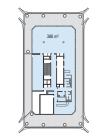
7 LEVEL 7 1900.09 SCALE 1:500

8 LEVEL 2 TP00.06 SCALE 1:500


5 LEVEL 8

LEVELS 10, 15, 20, 25, 30 SCALE 1:500

NE YY MG NE MG



4 LEVELS 11-14, 16-19, 21-24, 26-29 & 31 VP00.09 SCALE 1: 500

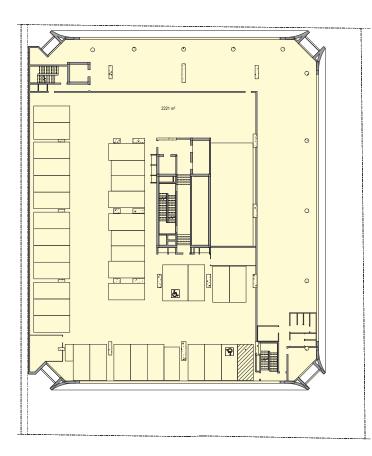
12 LEVELS 32-34

- -

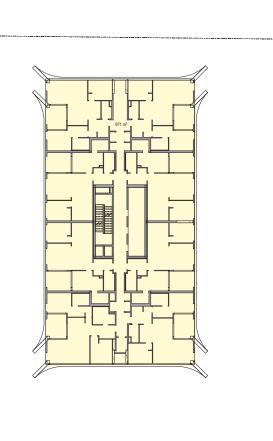
H

6 LEVEL 35

PRELIMINARY
 P2
 10.06.18
 DRAFT BACKGROUND ISSUE


 P3
 24.06.18
 ISSUE FOR INFORMATION

 P4
 20.09.18
 ISSUE FOR INFORMATION


 P5
 05.10.18
 DRAFT DA

 P6
 24.10.18
 BACKGROUND ISSUE

24/10/2018 5:32:26 PM

_ _ 唱

TYPICAL LOWER PODIUM COMMERCIAL

TYPICAL UPPER PODIUM HOTEL

Project ELIZABETH STREET

TYPICAL TOWER RESIDENTIAL

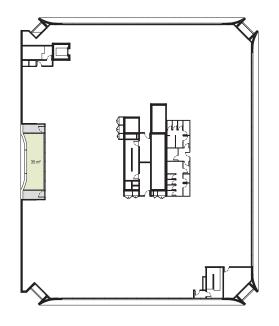
Project Ne / 218004 Date / 14/09/18 Author / NE Scate @ Af 1:200 Drawing No / TP06.02 P2

GBA	SITE AREA	% SITE COVER				
TYPICAL LOWER PODIUM						
2221 m ²	3082 m ²	72.1%				
TYPICAL UPPER PODIUM						
1471 m ²	3082 m ²	47.7%				
AVERAGE	NON-RESIDENTIAL	59.9%				
TYPICAL TOWER						
971 m²	3082 m ²	31.5%				

+

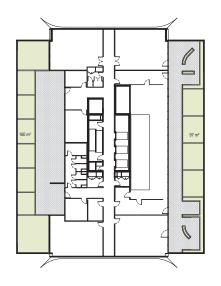
rothelowman

Brisbane, Melbourne, Sydney www.rothelowman.com.au


PRELIMINARY

Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE

NE MG


SITE COVER DIAGRAMS 26 ELIZABETH STREET LIVERPOOL

24/10/2018 5:25:37 PM

DEEP SOIL PLANTING - LEVEL 5

DEEP SOIL PLANTING - LEVEL 9

LIVEPPOL DCP 23 Sta Cover and Deep Soil Zones 3. The deep solar contemposed and comprise no less than 15% of the total site area (or proportionate to the percentage of residential uses in a mixed-use development), it is to be provided preferably in one continuous block but otherwises with no dimension (which or length) less nt results in full site coverage and there is no capacity for water in cordance with the provisions of Section 2.5. In such cases, comp-the development to minimise stormwater runoff. 4. Where n 2.5 Planting on S

stablishment and growth nimum soil volume 150m nimum soil volume 35m3 soil depth 1.3 n soil depth 1 Il trees (up to 2m high), minimum soil depth 0.8m, minimum soil volume 9m3

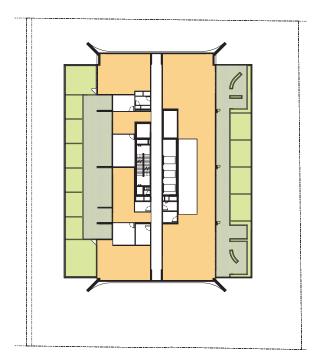
DEEP PLANTING SCHEDULE					
AREA	DEPTH				
35 m²	800mm				
43 m²	800mm				
54 m²	800mm				
12 m²	800mm				
12 m²	800mm				
58 m²	800mm				
97 m²	600 - 800mm				
160 m ²	800 - 1000mm				
471 m²					
	AREA 35 m ² 43 m ² 54 m ² 12 m ² 12 m ² 58 m ² 97 m ² 160 m ²				

SITE AREA	DEEP SOIL AREA	% OF DEEP SOIL
3082m ²	471m ²	15.3%

PRELIMINARY

DEEP SOIL PLANTING - LEVEL 3

Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE


LEGEND

NE MG

DEEP SOIL PLANTING AREA

24/10/2018 5:25:45 PM

Preject Na 218004 Date 14/09/18 Author YY Scate & As indicated TP06.04 P2

COMMUNAL OPEN SPACE - LEVEL 9

MIDWINTER COS SOLAR ACCESS

SITE AREA	COMMUNAL OPEN	SPACE	% OF SITE AREA
3082m ²	EXTERNAL	567m ²	
	INTERNAL	513m ²	
	TOTAL	1080m ²	35.0%
	COS IN SUNLIGHT	FOR 2HRS+ BETWEEN 9AM - 3PM	% OF MIN COS IN SUNLIGHT
	443m ²		57.5%

+

PRELIMINARY

Sh

24/10/2018 5:25:51 PM

Brisbane, Melbourne, Sydney www.rothelowman.com.au

rothelowman

IMAGE OF SOLAR COVERAGE ON EASTERN TERRACE

IMAGE OF SOLAR COVERAGE ON WESTERN TERRACE

Project ELIZABETH STREET

SITE AREA	COMMUNAL OPEN SPACE	% OF COS
3082m ²	1080m ²	35.0%
	COS IN SUNLIGHT FOR 2HRS+ BETWEEN 9AM - 3PM	% OF MIN. COS IN SUNLIGHT
	443m²	57.5%

PRELIMINARY

LEGEND

MG 2+ HOURS SOLAR ACCESS

2 HOURS SOLAR ACCESS

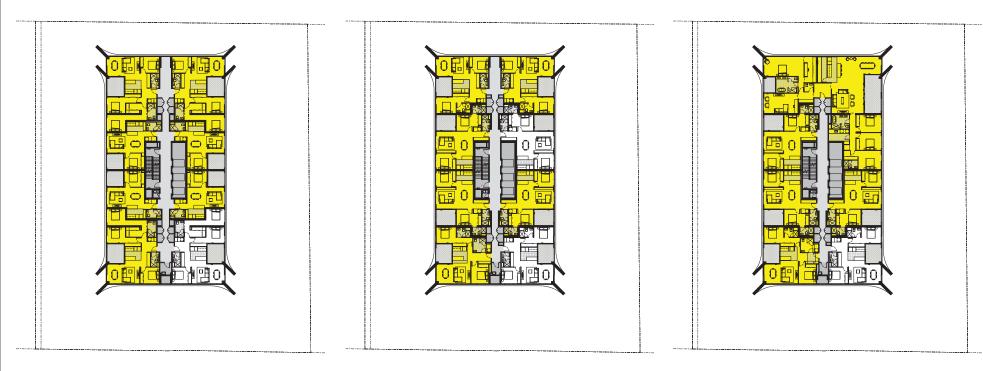
0 HOURS SOLAR ACCESS

COMMUNAL OPEN SPACE

CUEN STACE 28 EL2ABETH STREET LVRPPCOR by Lossen Property Pay LM relative all common task statistical property in and indexed any porphy and indexed any purpose of the family indexed documents the document in development indexed property and the statistical property rights in respect of this documents the document in development and the statistical any purpose of the family statistical any purpose of the family indexed of this documents the document in development and the statistical any purpose of the family statistical any purpose of the family indexed of this documents the document indexed from the statistical any statistical any purpose of the family statistical any purpose of the family statistical documents the document indexed from the statistical any statistical any statistical any statistical any purpose of the family statistical any purpose of the document of the document in any purpose of the statistical any statistical and statistical any statistical and statistical any statistical any statistical any statistical any statistical any statistical any statistical a

Density SOLAR COMMUNAL OPEN SPACE Project No. 218004 Date 14/09/18 Autor YY Scale @ Af As indicated indicated

Brisbane, Melbourne, Sydney www.rothelowman.com.au


rothelowman

LEVEL	No. SOLAR
LEVEL 10	7
LEVEL 11	6
LEVEL 12	6
LEVEL 13	6
LEVEL 14	6
LEVEL 15	6 7 6 6
LEVEL 16	6
LEVEL 17	6
LEVEL 18	6
LEVEL 19	6
LEVEL 20	7
LEVEL 21	6
LEVEL 22	6
LEVEL 23	6
LEVEL 24	6
LEVEL 25	7
LEVEL 26	6
LEVEL 27	6
LEVEL 28	6
LEVEL 29	6
LEVEL 30	7
LEVEL 31	6
LEVEL 32	6 5 5
LEVEL 33	5
LEVEL 34	5
	152
	SOLAR
	COMPLIANT
	78.4%

rothelowman

Brisbane, Melbourne, Sydney www.rothelowman.com.au

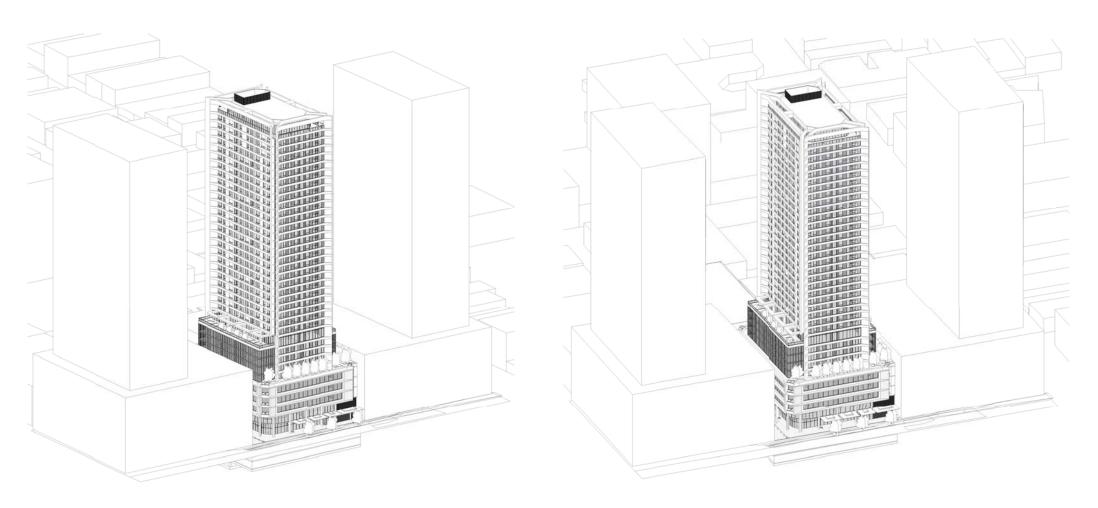
+

LEVEL 10, 15, 20, 25, 30

LEVEL 11-14, 16-19, 21-24, 26-29, 31

Project ELIZABETH STREET

LEVEL 32-34



COMPLIANT 2HR SOLAR ACCESS

LEGEND

Drawing SOLAR AND CROSS Project Nov 218004 Date 14/09/18 Author YY Scale @ Af 1 : 250 TP06.10 P2 VENTILATION COMPLIANCE 26 ELIZABETH STREET LIVERPOOL Declaring: Role Lemme Property Pty, Lid. Index ad common late: catadory lane of their digits including copyright and index property lights in respect of the concentre. There requires in identifies a field catadory later and share rights including copyright and index respective point than its intended later, unauthorized changes or maxes of the document on other projects without the permission of Role Lemma Property Pty. Lid. Under no simumatance shall transfer of this document The decempoint and concrusted are unaveraged in the document. All Notice 2000 750 (597).

Winter Solstice 9am

Winter Solstice 10am

PRELIMINARY

Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE

NOTE: Neighouring sites development calculated assuming maximum GFA / maximum height under pan ops to determine maximum tower floor Mplate size.

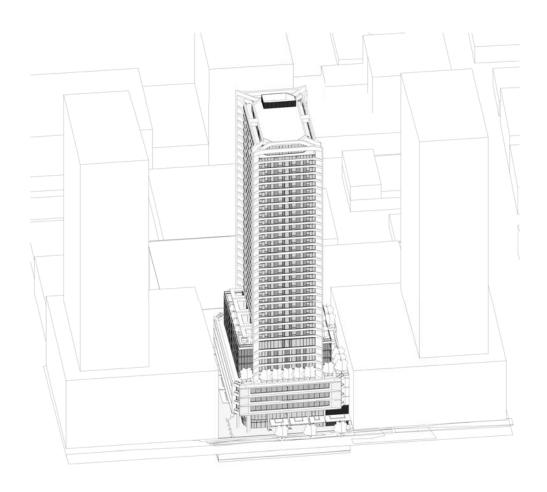
ELIZABETH STREET

26 ELIZABETH STREET LIVERPOOL

VIEW STUDY Discilarer: Rohe Lamme Roendy Pp, Lid valaria al common law, statutory law and other ophila incidinali propriety) and intelescular property rights in an electronic the recognition of the statutory of the statut

SOLAR POINT OF

24/10/2018 5:27:17 PM

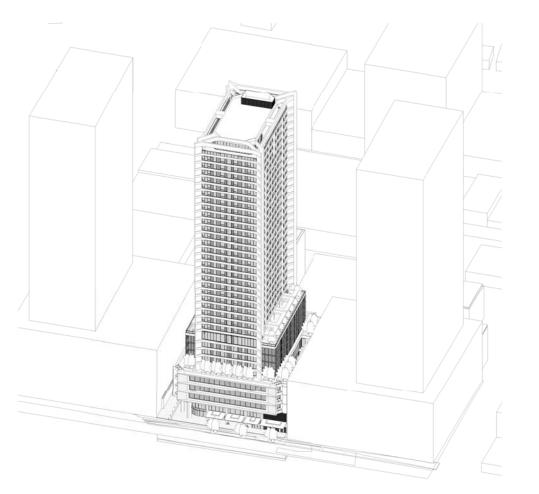

Brisbane, Melbourne, Sydney www.rothelowman.com.au

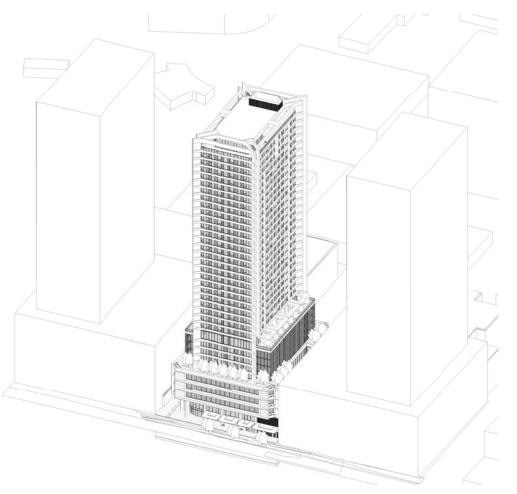

rothelowman

TP06.11 P2

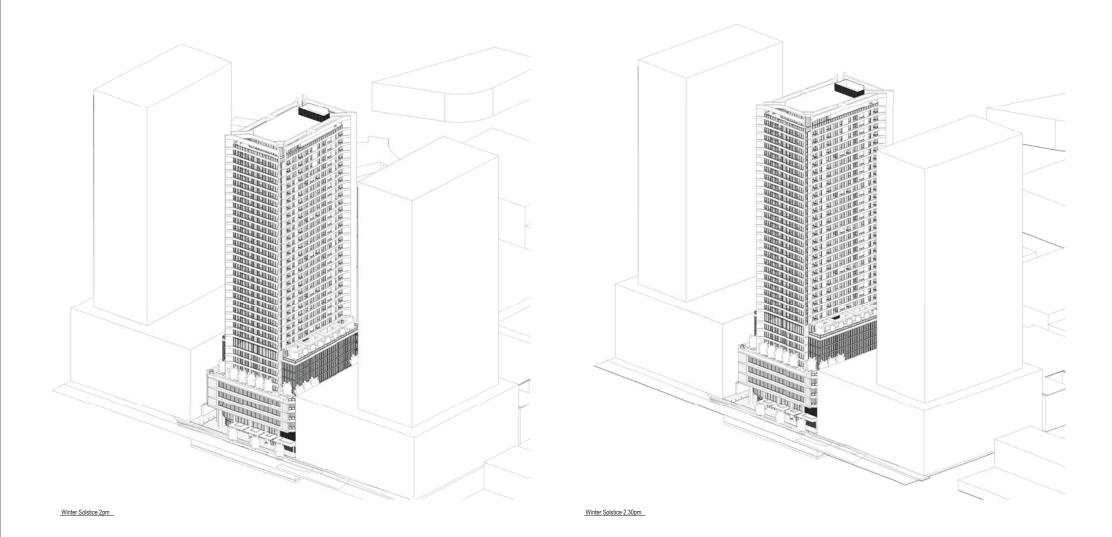
Author MG Scale: @ A1

Project No 218004 Date 14/09/18



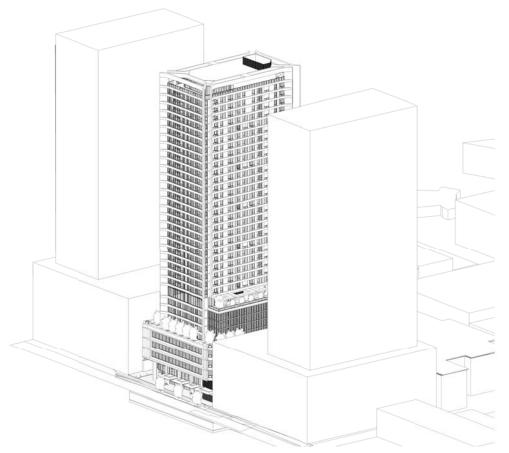

Winter Solstice 11am

Winter Solstice 12pm



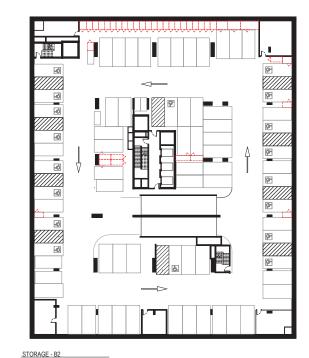
Winter Solstice 12.30pm

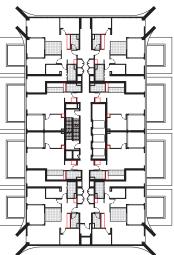
Winter Solstice 1pm



Winter Solstice 3pm

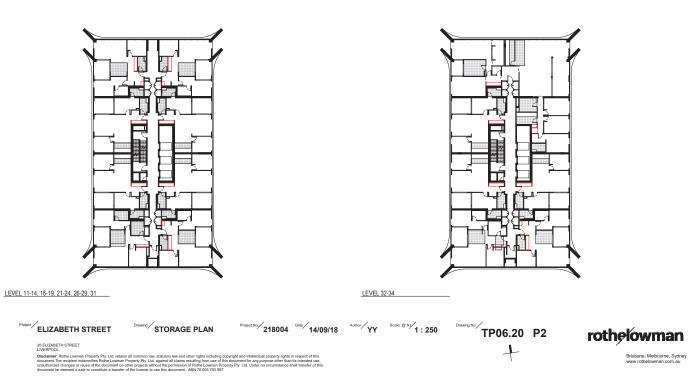
PRELIMINARY


NE MG



T**I** _ ----h -0 --6 \rightarrow 100

STORAGE - B3


STORAGE - B4

LEVEL 10, 15, 20, 25, 30

PRELIMINARY

Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE

NE MG

RESIDENTIAL STORAGE WITHIN APARTMENT UNIT UNIT TYPE VOLUME

LEVEL 10 1001 1 BED 4 m³ 1002 3 BED 5 m³ 1003 3 BED 5 m³ 1004 1 BED 4 m³ 1005 1 BED 4 m³ 1006 3 BED 5 m³ 1007 3 BED 5 m³ 1008 1 BED 4 m³

LEVEL 11		
1101	2 BED	8 m³
1102	2 BED	5 m³
1103	2 BED	3 m ³
1104	2 BED	8 m³
1105	2 BED	8 m³
1106	2 BED	5 m ³
1107	2 BED	5 m ³
1108	2 BED	8 m³

LEVEL 12		
1201	2 BED	8 m³
1202	2 BED	5 m³
1203	2 BED	3 m³
1204	2 BED	8 m ³
1205	2 BED	8 m³
1206	2 BED	5 m³
1207	2 BED	5 m³
1208	2 BED	8 m ³

LEVEL 13 1301 2 BED 8 m³ 1302 2 BED 5 m³ 1303 2 BED 3 m³ 1304 2 BED 8 m³ 1305 2 BED 8 m³ 1306 2 BED 5 m³ 1307 2 BED 5 m³ 1308 2 BED 8 m³

LEVEL 14		
1401	2 BED	8 m ³
1402	2 BED	5 m ³
1403	2 BED	3 m ³
1404	2 BED	8 m ³
1405	2 BED	8 m ³
1406	2 BED	5 m ³
1407	2 BED	5 m ³
1408	2 BED	8 m ³

RESIDENTIAL STORAGE WITHIN APARTMENT UNIT UNIT TYPE VOLUME

LEVEL 15 1501 1 BED 4 m³ 1502 3 BED 5 m³ 1503 3 BED 5 m³ 1504 1 BED 4 m³ 1505 1 BED 4 m³ 1506 3 BED 5 m³ 1507 3 BED 5 m³ 1508 1 BED 4 m³

LEVEL 16		
1601	2 BED	8 m³
1602	2 BED	5 m³
1603	2 BED	3 m³
1604	2 BED	8 m³
1605	2 BED	8 m³
1606	2 BED	5 m³
1607	2 BED	5 m³
1608	2 BED	8 m³

LEVEL 17		
1701	2 BED	8 m³
1702	2 BED	5 m³
1703	2 BED	3 m ³
1704	2 BED	8 m ³
1705	2 BED	8 m³
1706	2 BED	5 m ³
1707	2 BED	5 m ³
1708	2 BED	8 m³

LEVEL 18 1801 2 BED 8 m³ 1802 2 BED 5 m³ 1803 2 BED 3 m³ 1804 2 BED 8 m³ 1805 2 BED 8 m³ 1806 2 BED 5 m³ 1807 2 BED 5 m³ 1808

LEVEL 19 1901

1902

1903

1904

1905

1906

1907

1908

2 BED

2 BED

2 BED 8 m³ 2 BED 8 m³ 2 BED 5 m³ 2 BED 3 m³ 2 BED 8 m³ 2 BED 8 m³ 2 BED 5 m³

5 m³

8 m³

RESIDENTIAL STORAGE WITHIN APARTMENT UNIT UNIT TYPE VOLUME

LEVEL 20		
2001	1 BED	4 m ³
2002	3 BED	5 m ³
2003	3 BED	5 m ³
2004	1 BED	4 m ³
2005	1 BED	4 m ³
2006	3 BED	5 m ³
2007	3 BED	5 m ³
2008	1 BED	4 m ³

LEVEL 21 2101 2 BED 8 m³ 2102 2 BED 5 m³ 2103 2 BED 3 m³ 2104 2 BED 8 m³ 2105 2 BED 8 m³ 2106 2 BED 5 m³ 2107 2 BED 5 m³ 2108 2 BED 8 m³

LEVEL 22 2201 2 BED 8 m³ 2202 2 BED 5 m³ 2203 2 BED 3 m³ 2204 2 BED 8 m³ 2205 2 BED 8 m³ 2206 2 BED 5 m³ 2207 2 BED 5 m³ 2208 2 BED 8 m³

LEVEL 23		
2301	2 BED	8 m³
2302	2 BED	5 m³
2303	2 BED	3 m³
2304	2 BED	8 m³
2305	2 BED	8 m³
2306	2 BED	5 m³
2307	2 BED	5 m ³
2308	2 BED	8 m³

LEVEL 24		
2401	2 BED	8 m³
2402	2 BED	5 m³
2403	2 BED	3 m³
2404	2 BED	8 m ³
2405	2 BED	8 m³
2406	2 BED	5 m³
2407	2 BED	5 m³
2408	2 BED	8 m³

RESIDENTIAL STORAGE WITHIN APARTMENT UNIT UNIT TYPE VOLUME

LEVEL 25 2501 1 BED 4 m³ 2502 3 BED 5 m³ 2503 3 BED 5 m³ 2504 1 BED 4 m³ 2505 1 BED 4 m³ 2506 3 BED 5 m³ 2507 5 m³ 3 BED 2508 1 BED 4 m³

	LEVEL 26		
	LEVEL 20		
	2601	2 BED	8 m³
	2602	2 BED	5 m ³
	2603	2 BED	3 m³
	2604	2 BED	8 m³
	2605	2 BED	8 m³
	2606	2 BED	5 m ³
	2607	2 BED	5 m³
	2608	2 BED	8 m³

	LEVEL 27		
	2701	2 BED	8 m³
	2702	2 BED	5 m ³
1	2703	2 BED	3 m ³
	2704	2 BED	8 m ³
	2705	2 BED	8 m³
	2706	2 BED	5 m³
	2707	2 BED	5 m ³
	2708	2 BED	8 m³

LEVEL 28 2801 2 BED 8 m³ 2802 2 BED 5 m³ 2803 2 BED 3 m³ 2804 2 BED 8 m³ 2805 2 BED 8 m³ 2806 2 BED 5 m³ 2807 2 BED 5 m³

2808

LEVEL 29		
2901	2 BED	8 m³
2902	2 BED	5 m³
2903	2 BED	3 m³
2904	2 BED	8 m³
2905	2 BED	8 m³
2906	2 BED	5 m³
2907	2 BED	5 m³
2908	2 BED	8 m³

2 BED

8 m³

Drawing STORAGE SCHEDULE Project No 218004 Date 14/09/18 Author YY Scale: @ At

RESIDENTIAL STORAGE WITHIN APARTMENT UNIT UNIT TYPE VOLUME

LEVEL 30 3001 1 BED 4 m³ 3002 3 BED 5 m³ 3003 3 BED 5 m³ 3004 1 BED 4 m³ 3005 1 BED 4 m³ 3006 3 BED 5 m³ 3007 3 BED 5 m³ 3008 1 BED 4 m³

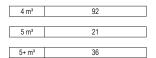
LEVEL 31				
3101	2 BED	8 m³		
3102	2 BED	5 m³		
3103	2 BED	3 m³		
3104	2 BED	8 m³		
3105	2 BED	8 m³		
3106	2 BED	5 m ³		
3107	2 BED	5 m ³		
3108	2 BED	8 m³		

LEVEL 32		
3012	2 BED	5 m ³
3201	2 BED	8 m ³
3203	2 BED	3 m ³
3204	2 BED	8 m ³
3205	2 BED	8 m ³
3206	4 BED	16 m ³

LEVEL 33

3013	2 BED	5 m ³
3301	2 BED	8 m ³
3303	2 BED	3 m ³
3304	2 BED	8 m ³
3305	2 BED	8 m ³
3306	4 BED	16 m ³

LEVEL 34


3018	2 BED	5 m³
3401	2 BED	8 m³
3403	2 BED	3 m³
3404	2 BED	8 m³
3405	2 BED	8 m³
3406	4 BED	16 m³

TOTAL APARTMENTS = 194

APARTMENTS ACHIEVING ADG STORAGE REQUIREMENT INTERNALLY = 68

MINIMUM NUMBER OF BASEMENT STORAGE CAGE REQUIRED = 126

RESIDENTIAL STORAGE IN BASEMENTS VOLUME NO. OF STORAGE CAGES

TOTAL: 149

TP06.21 P2

+

PRELIMINARY

24/10/2018 5:31:02 PM


ELIZABETH STREET 26 ELIZABETH STREET LIVERPOOL Declaring: Role Lemme Property Pty, Lid. Index ad common late: catadory lane of their digits including copyright and index index property lights in respect of the concentre. The response in identifies a Role can an Property Pty. Lid. Under no set in this document. The response in the last in interded late, unauthorized dranges or maxes of the document on other projects without the permission of Role Lemma Property Pty. Lid. Under no simumatance shall transfer of this document to the endex a add en concruites a testing of the document. All Not 000 750 597

NE MG

rothelowman

² TYPE A - 2 BED (POST-ADAPTION)
TP00.06 SCALE 1:50
REFER TO ACCESSIBILITY REPORT FOR DETAILED DESCRIPTION

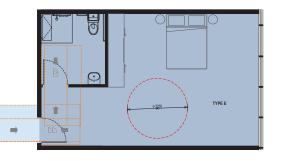
MG MG NE NE MG

OR DETAILED DESCRIPTION

PRELIMINARY

/			
P2	27.08.18	ISSUE FOR INFORMATION	
P3			
P4	18.09.18	ACCESS ISSUE	
P5	05.10.18	DRAFT DA	
P6	24.10.18	BACKGROUND ISSUE	
	P3 P4 P5	P2 27.08.18 P3 31.08.18 P4 18.09.18 P5 05.10.18	P2 27.08.18 ISSUE FOR INFORMATION P3 31.08.18 ISSUE FOR INFORMATION P4 18.09.18 ACCESS ISSUE P5 05.10.18 DRAFT DA

ADAPTABLE APARTMENTS SCHEDULE		
LEVEL	UNIT NUMBER	
LEVEL 11	1103	
LEVEL 12	1203	
LEVEL 13	1303	
LEVEL 14	1403	
LEVEL 16	1603	
LEVEL 17	1703	
LEVEL 18	1803	
LEVEL 19	1903	
LEVEL 21	2103	
LEVEL 22	2203	
LEVEL 23	2303	
LEVEL 24	2403	
LEVEL 26	2603	
LEVEL 27	2703	
LEVEL 28	2803	
LEVEL 29	2903	
LEVEL 31	3103	
LEVEL 32	3203	
LEVEL 33	3303	
LEVEL 34	3403	
TOTAL: 20		


Project ELIZABETH STREET

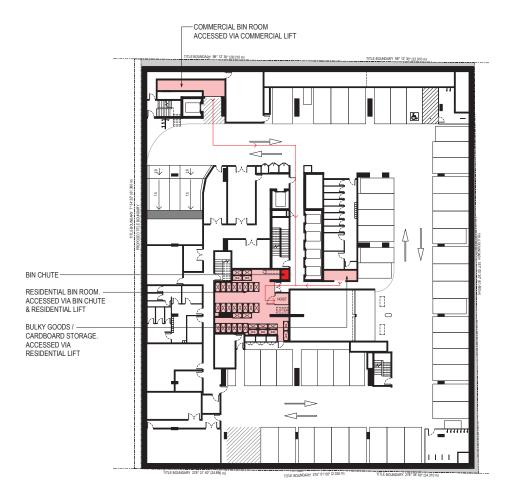
UNIT NUMBER	UNIT TYPE
LEVEL 10	
1002	TYPE C
1003	TYPE C
1006	TYPE C
1007	TYPE C
LEVEL 15	
1502	TYPE C
1503	TYPE C
1506	TYPE C
1507	TYPE C
LEVEL 20	
2002	TYPE C
2003	TYPE C
2006	TYPE C
2007	TYPE C
LEVEL 25	
2502	TYPE C
2503	TYPE C
2506	TYPE C
2507	TYPE C

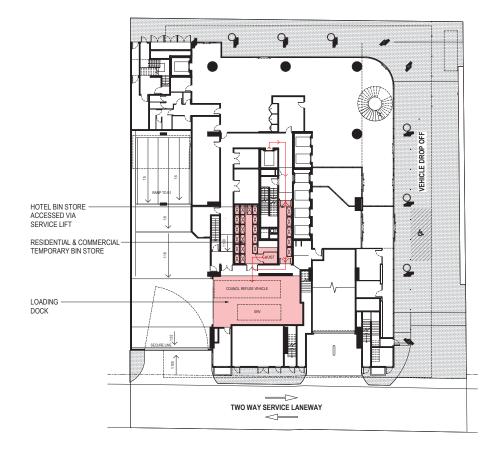
LEVEL 30			
3002	TYPE C		
3003	TYPE C		
3006	TYPE C		
3007	TYPE C		
TOTAL: 20			

NOTE: ALL ACCESSIBLE APARTMENTS COUNTED AS LHA

ACCESSIBLE HOTEL ROOM		
LEVEL ROOM TYPE		
LEVEL 5	TYPE E	
LEVEL 5	TYPE E	
LEVEL 6	TYPE E	
LEVEL 6	TYPE E	
LEVEL 7	TYPE E	
LEVEL 7	TYPE E	
TOTAL: 6		

4 HOTEL TYPE E (ACCESSIBLE) SCALE 1:50

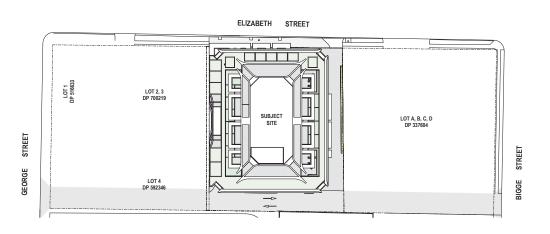

Project No 218004 Date 17/08/18 Author YY Scate @ Af 1:50 TP06.30 P6 +

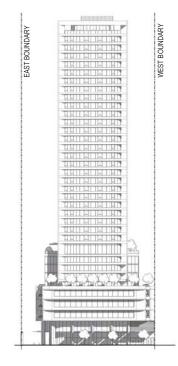

Brisbane, Melbourne, Sydney www.rothelowman.com.au

ADAPTABLE, LHA COMPLIANT & ACCESSIBLE PLANS 26 ELIZABETH STREET LIVERPOOL UncerVed. These Learners Property PP, LLL statistics of common lates calability and other rights including coupright and informational property high in respect of the Decidariant. The respective Decider and De

3 TYPE C - 3 BED (LHA) VP00.06 SCALE 1: 50

BASEMENT 1 TP03.07 SCALE 1 : 200


2 GROUND 1900.06 SCALE 1 : 200


PRELIMINARY

Project / ELIZABETH STREET WASTE MANAGEMENT Project W 218004 Date / 13/09/18 Autor / NE Scatt @ Af / 1:200 Date / 12:00 TP06.41 P2 / TP

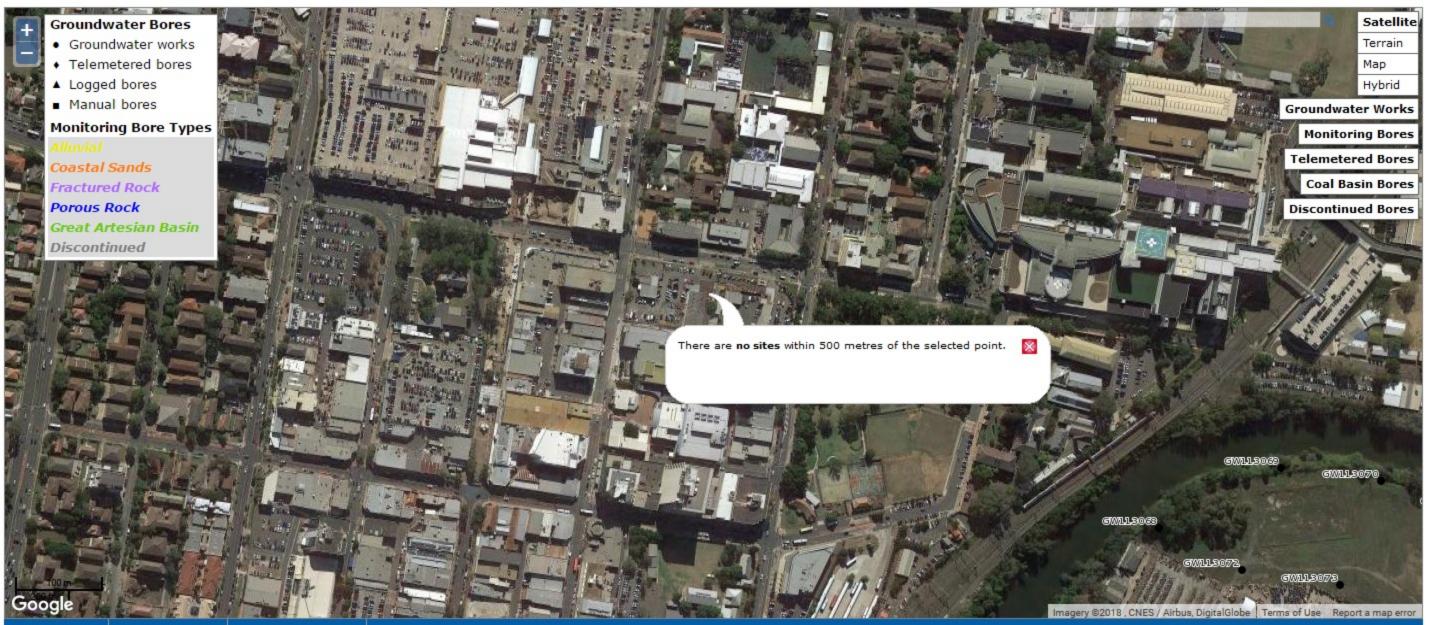
1 SITE PLAN TP00.00 SCALE 1 : 500 2 NORTH ELEVATION SCALE 1:500 3 EAST ELEVATION

Revisions P1 05.10.18 DRAFT DA P2 24.10.18 BACKGROUND ISSUE

NE MG

24/10/2018 5:32:01 PM

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1


APPENDIX B

NSW Office of Water Groundwater Bore Search

All Groundwater

GROUND WATER

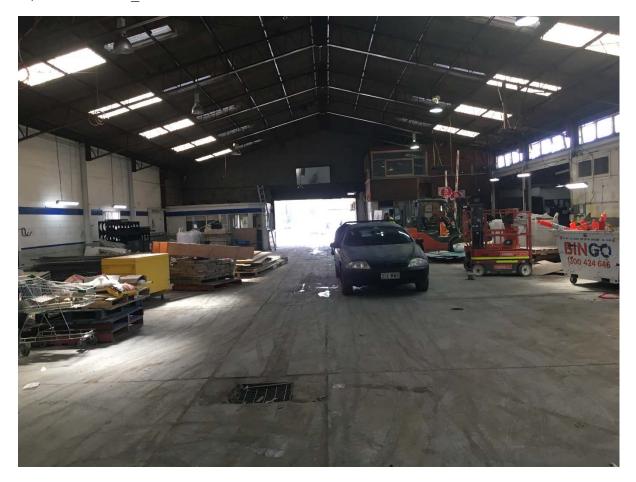
Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1

APPENDIX C Site Photographs

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02 Rev1

Photograph 1: Concrete patched area found at the rear portion of the existing service centre (20 April 2018).

Photograph 2: Broken sheets of potential asbestos in the storage rooms surrounding the car parking (20 April 2018).



Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1

Photograph 3: Celling of storage rooms surrounding the car parking (20 April 2018).

Photograph 4: Inside conditions of service centre, looking north (20 April 2018).

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1

Photograph 5: Potential lead paint – roof of service centre (20 April 2018).

Photograph 6: Unwanted construction wastes in the service centre (20 April 2018).

Photograph 7: Overall car parking conditions – facing north (20 April 2018).

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1

APPENDIX D Historical Property Titles Search

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Sydney

<u>Report</u>

<u>NSW LRS</u> (Formerly LPI)

Address: 26 Elizabeth Street & Elizabeth Street, Liverpool

Description: - Lot 1 D.P. 217460 & Lot 10 D.P. 621840

As regards Lot 1 D.P. 217460

As regards the part tinted green on the attached Cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
31.12.1910 (1910 to 1936)	Dacres Fitzherbert Evans (Bank Manager) & his deceased estate	Book 924 No. 385
26.02.1936 (1936 to 1950)	Ernest Albert Groves (Builder Now Gentleman)	Book 1750 No. 771
19.06.1950 (1950 to 1962)	Marjorie Winifred Elkington (Married Woman)	Book 2125 No. 376
27.07.1962 (1962 to 1966)	Peter Howard Warren (Motor Trader)	Book 2623 No. 156 Now Vol 10307 Fol 238

As regards the parts tinted pink on the attached Cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
23.06.1915 (1915 to 1921)	Hannah Wadsworth (Married Woman)	Book 1061 No. 727
28.02.1921 (1921 to 1953)	Mary Whilimena Hammond (Married Woman) Also known as Mary Wilheimina Hammond	Book 1270 No. 453
10.08.1953 (1953 to 1953)	Henry Leabeater (Carpenter)	Book 2259 No. 445
13.11.1953	Giuseppi Amalfi (Farmer) & his deceased estate Angelo Amalfi (Farmer) Agostino Amalfi (Farmer) Salvatori Amalfi (Farmer) Alfredo Amalfi (Farmer)	Book 2271 No. 606
	Purported Possessory Title	
1950? (1950 to 1963)	Marjorie Winifred Elkington (Married Woman)	
12.03.1963 (1963 to 1966)	Peter Howard Warren (Motor Trader)	Book 2644 No.31 Now Vol 10307 Fol 238

As regards the part tinted blue on the attached Cadastre

Note: Was formerly part of a Reserved Lane 14 feet 6 Inches wide which was claimed by Possessory Application in Primary Application No. 43073 dated 10.05.1966

1

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Continued as regards the whole of Lot 1 D.P. 217460

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
02.12.1966 (1966 to 1976)	Commercial & General Acceptance Limited	Vol 10307 Fol 238
21.05.1976 (1976 to 2015)	Peter Warren (Properties) Pty. Limited	Vol 10307 Fol 238 Now 1/217460
22.09.2015 (2015 to Date)	# Elizabeth Street Partnership Pty Ltd	1/217460

Denotes Current Registered Proprietor

Easements: - NIL

Leases: -

• 02.12.1966 (K570855) - Peter Howard Warren (Motor Trader) - expired 21.05.1976

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot 10 D.P. 621840

As regards the part tinted purple on the attached Cadastre

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
23.06.1915 (1915 to 1921)	Hannah Wadsworth (Married Woman)	Book 1061 No. 727
28.02.1921 (1921 to 1953)	Mary Whilimena Hammond (Married Woman) Also known as Mary Wilheimina Hammond	Book 1270 No. 453
10.08.1953 (1953 to 1953)	Henry Leabeater (Carpenter)	Book 2259 No. 445
13.011.1953 (1953 to 1967)	Giuseppi Amalfi (Farmer) & his deceased estate Angelo Amalfi (Farmer) Agostino Amalfi (Farmer) Salvatori Amalfi (Farmer) Alfredo Amalfi (Farmer)	Book 2271 No. 606
25.09.1967 (1967 to 2015)	Peter Warren (Properties) Pty. Limited	Book 2855 No. 238 Now 10/621840

As regards the part tinted yellow on the attached Cadastre

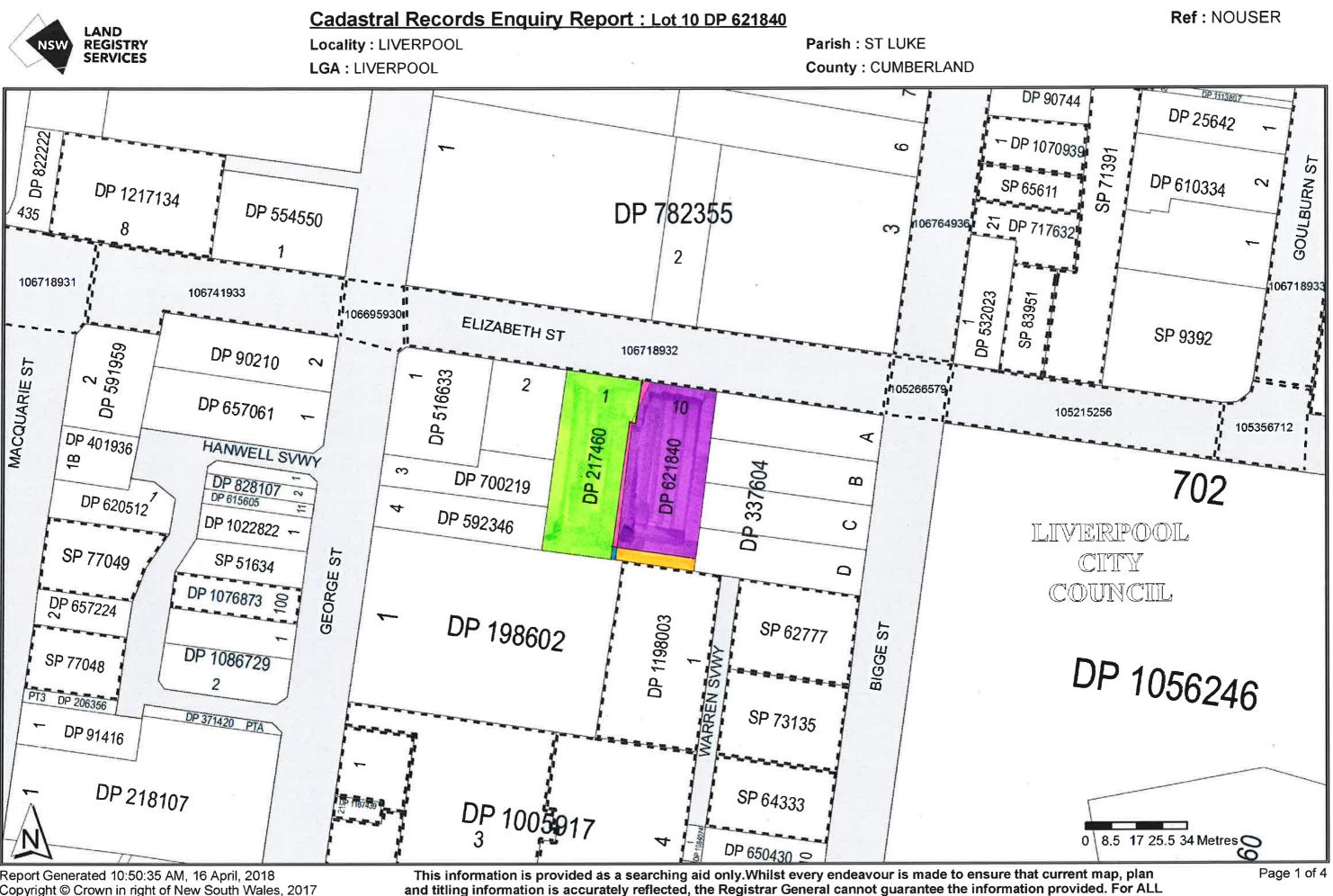
Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
	Documentary Title	
31.12.1910 (1910 to 1936)	Dacres Fitzherbert Evans (Bank Manager) & his deceased estate	Book 924 No. 385
26.02.1936 (1936 to 1950)	Ernest Albert Groves (Builder Now Gentleman)	Book 1750 No. 771
19.06.1950 (1950 to 1962)	Marjorie Winifred Elkington (Married Woman)	Book 2125 No. 376
27.07.1962	Peter Howard Warren (Motor Trader)	Book 2623 No. 156
	Purported Possessory Title	
1955?	Giuseppi Amalfi (Farmer) & his deceased estate Angelo Amalfi (Farmer) Agostino Amalfi (Farmer) Salvatori Amalfi (Farmer) Alfredo Amalfi (Farmer)	
25.09.1967 (1967 to 2015)	Peter Warren (Properties) Pty. Limited	Book 2855 No. 238 Now 10/621840

As regards the part tinted orange on the attached Cadastre

Note: Was formerly part of a Reserved Lane 14 feet 6 Inches wide which was claimed by Possessory Application in Primary Application No. 56264 dated 16.12.1982

Level 14, 135 King Street, Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

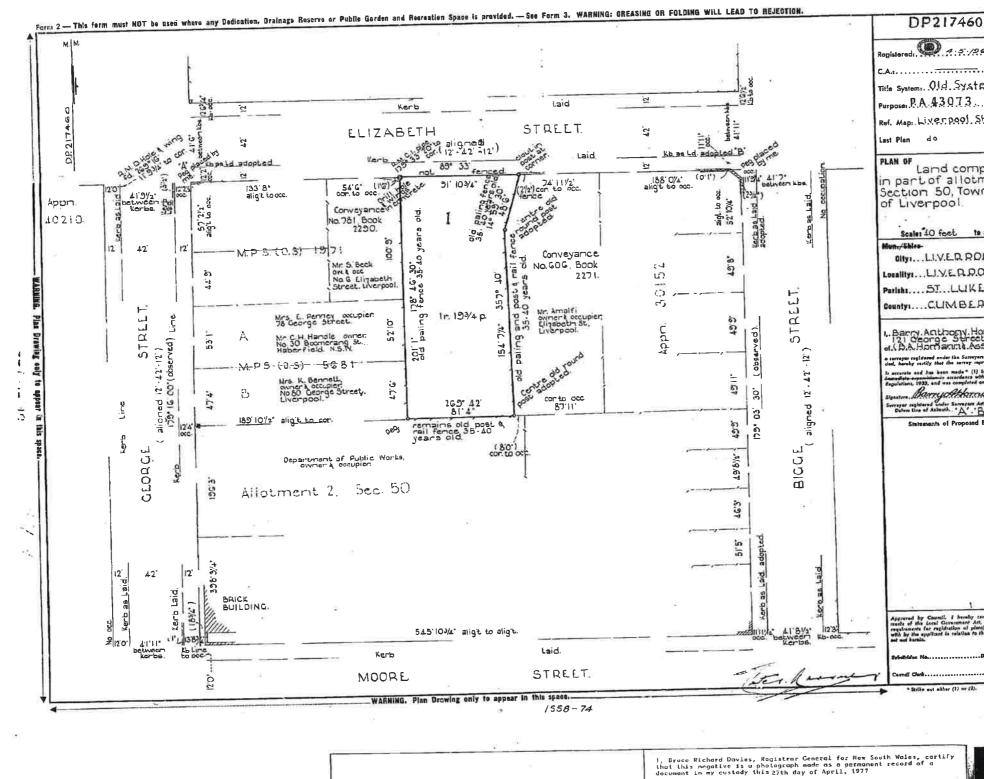
Continued as regards the whole of Lot 10 D.P. 621840


Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
22.09.2015 (2015 to Date)	# Elizabeth Street Partnership Pty Ltd	10/621840

Denotes Current Registered Proprietor

Easements: - NIL

Leases: - NIL

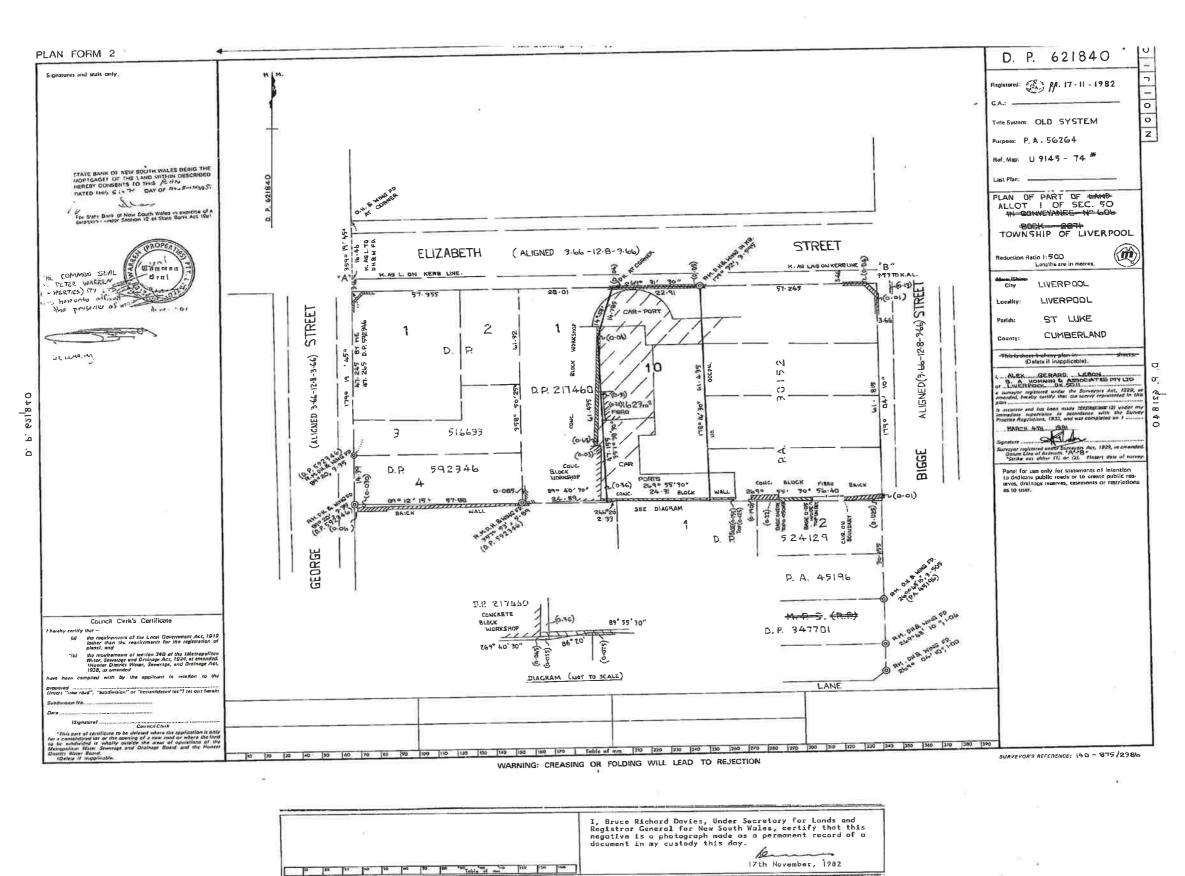

Yours Sincerely James McDonnell 20 April 2018

Report Generated 10:50:35 AM, 16 April, 2018 Copyright © Crown in right of New South Wales, 2017 ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

InfoTrack

-21/22

SS. A. SS. A. prised ment I, inship s an Inoh DDL. DD	12 2 1/2 $12 3 1/2$ $12 6 3/4$ $13 8 3/4$ $13 8 3/4$ $13 8 3/4$ $14 6 41 7 41 6 1/2 41 9 1/2 41 11 42 - 44 9 47 4 47 4 47 5 48 6 49 8 1/2 49 9 49 8 1/2 49 9 49 8 1/2 49 9 49 1 51 5 52 10 1/4 53 1 52 10 1/4 53 1 54 6 57 2 1/2 74 11 1/2 74 11 1/2 74 100 9 133 8 154 7 1/4 198 0 1/4 196 3 201 1 398 3 1/4 54.5 10 3/4 5$	METRES 0.025 0.064 0.070 0.089 0.457 0.527 0.610 2.438 3.580 3.520 3.652 3.653 3.700 3.759 3.759 3.759 12.679 12.675 12.679 12.675 12.679 12.733 12.776 12.735 12.679 12.675 12.679 12.733 12.776 12.735 12.679 12.735 12.679 12.735 15.515 15.672 16.100 16.6120 17.437 24.730 15.515 15.672 26.010 16.6120 17.437 24.730 15.515 15.672 26.010 30.742 27.309 59.817 21.393 16.389 SQ R
entify that the courter 1, 1919 (attac than the nd), have been courted	- 1 19 3/4	1511
.Daio		



her

2

 $\mathbf{H}^{\mathbf{I}}$ ĥ /seg:1 11:30 /Prt:12-Apr-2018 /Pgs:ALL OK /Sts:OK. /Rev:04-Jan-1993 ρ. 0621840 Req:R427110 /Doc:DF (Ref:Liverpool /Src:M

PERM							-		Charles and								
		7 1. Book.		Inst.	a share and the same of the set			APP	NO.	30	152						
		(47)						.								1.10	
11	X	I.A	72	Gt.	John Rowley 12 4.37	Zalr. 34 p (Allot.	1 Sec 50) (black)	Þ								
-	×	0	731				do	do (?.	ex M-213	3)				and the			
14	X	P.	420	D.M		do .	do	do.		•			1.1.1.1				
	×	P	409	M	J.Malealm	do (3) (PT.	do ;	(red)					121513			- 16 - 7	
12	×	S	225	F.C.	do.	do (?) (do	do)(do.)							1.121		
	×	V	362	LAR	Rowley & Makolm to W. Fritchard												
	Y		133		and the second se	Lots 1.2.3 & 6								100		1	
12.0	1	35	134	M	7										100	-44	
ŝŸ.	1	55	299	DN		do		do .						Eliza	beth	K	6 10
Č.	~		872	Contraction of the local division of the loc	W.Robinson	do		do .				1 .				Ä	N 267
	Y		873	G1225	E. Throsby 2015	do	- Tree	do.				129	,	54'6"	89°33'8	14 (= 53)	B"] 83'6"349'
	Ľ	86		A CONTRACTOR	Throsbys to J. Wheeler	No		10.						BK.2290	1.	AD A	4 8 50)
2		299	•	1.0	J. Wheeler 1.2.			do.		-	6.15	7 to 10		No. 781 6	5	Hy C	
17.4	1.00	633		80.00)	do		do.		25	4.	1010	M-2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U.S.	Portchava	BR. 2271 No. 606P 5
3	X	770	586	DM					1		66/2	E La Te	141 2	0	264	4-31 0	No. BUGP -
	1	770	1000		STOL ON A WARTER SOU	. do	1.	do.			20	ちれら	5	0	205:	1 2	36-98
	1	997		ALC: NO	{			40 .		Be	10		in the	Grah	s ald.	Ir. 34	D. (2)27. 11, 3 J.C. Rossite
		1549			· Applicant	s' do		do		210	1.		6.5	Geo	S N S	2.14 °	APPN 56264
		1545	Jec.	-	nppricane	Uredesc. 25	in ve		lane)	Jec	X			Sec. 1	8.6	154	00'
	1	Doc.	18	cs	do					0		129		54'6"	m 8/4 209°42	817 (=	90' 350' 39 z'z)Re 535.
	-			1		Pt Allot / Sec. Corner Sisse	El:326	the sta in	85'X 181		1		Geo. Gr	aham	I SEAL		Jno.
-100			1		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			They be			1.5	16.5					
		ilization and		NA		Sec. 1					Lay	N. The				1.1	
			-2			·				-	·			Sec. Par	a ler		No. Rock
100				2.91				記事で行		a i i i	*. 					1.000	1. P. 1. 19 1.
		1.161			A CONSTRUCTION	6			See.	1.2	1.10	1 5	e a star i sa				
		and a		2	WALL AND		10.3		10 1 1	ξ.,	1.5	× 15-			Salar !		
		1	2.3	T	The second s					÷ .	14		Nº 20 M		-		
33				15			12						2	1. 18-44			
		17 -2				1222		11月1日	1000		清佳》	2 . 4		1.44	·		
		An of the						-		1		1	1. 18	11-01	なる語言		
									Freihe Bart		Save.			·	a state		
						and the second sec	-		-		-		Charles and				

80 St. NW Lar Lats 183'6" 187'944 1) St. st. 183 3 4183. 0 · 1.2.32 6(?) Ear 409 Bigge's (Biggs by 0-731) Bigge's (Biggs by 5-225) 5/2 E. 303 5/2 199" 35 - 133 1549 - 568 34 ter 0' 183'6" 153'Lane x 14/2 ft 185'0/2" Wide 52 Graham (Lone 20' wide by 19412) 1

Req:R442043 /Doc:PA 043073 PA /Rev:22-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:16-Apr-2018 11:19 /Seq:1 Ref:Liverpool /Src:M 110 R.P. 2. 45073 fem south Blalps P APPLICATION TO BRING LANDS UNDER THE PROVISIONS OF THE REAL PROPERTY ACT, 1900. 5 3 Lodgment are of a lasts-FEE SIMPLE. . Certificat AR.GE Applicants are reminded that by virtue of the provisions of the Grimes Act, 1900, the prealities of jury are stached to a false declaration concerning any matter or procedure sunder the Act, and that utmost care is therefore necessary in a framing (or reading over, if the form be filled up or ar Altaney) CAUTION : ed by Section 128 of the lical Property Act. 1900, any fraud, error, emission, mintrarresolution, 1900, any fraud, error, amiailon, miarpress critificate romain liable for damages i trilly procure, assists in fraudulendly j sale of Title, is declared guilty of a mi ment sole exceeding three years; and ties or privice to the fraud. PETER HOWARD WAHREN of 100 Hume Highway Liverpool, Motor Trader do solemnly and sincerely declare, that * I An seized for an Estate in fee simple of Ma case may be situated in the City of Liverpool, Parish of St. Luke and County of Cumberland with the application of the second se containing about 1 rood $19\frac{3}{4}$ perches shown on the plan dated 10th August 1962 prepared by Surveyor Barry Anthony Homann lodged herewith. . Act, 1900 (see i). Registrar-General uty dispensed a of survey, an an, purpared ication. be any rights of a coling the pre-coling the pre-culars aboutd be for description allah 1 Soc 50 Trep. Liverport of the nd value which land (including all improvements) is of the value of " seven thousand pounds (27,000. e whole and no more, is f part - of * 2 acres, 1 rood 34 perches- originally grante ment with rei mber and sect any, or if not acres granted. by Crown grant, under the hand of the Governor of the Colony, dated the John Rawley lo h twelth day of April 5,07 1.72 And I/we further declare, that I/we verily believe there does not exist any lease or ogreement for lease of the said land for any term exceeding a tenancy for one year, or from year to year,k Also, that there does not exist any mortgage, lien, writ of execution, charge or encumbrance, will or settlement, or any deed or writing, contract, or dealing (other than such lease or tenancy as aforesaid), giving any right, claim, or interest in or to the said land, or any part thereof, to any other person than myself/onecoleces! 1.90 CV 2653 16 215 In full and I/we further declare, that there is no person in possession or occupation of the said land or any part thereof adversely to my/our Estate or Interest therein, and that the said land is now min the occupation of myself _____ adjacen and that the owners and occupiers of adjacent lands are as follows ":---00 State whethe SVI State whether owner or occupier, Address. / West. DUNCIL 2 Mr. Amalfi EAST 2 Elizabeth Street, Liverpool owner & Occupier SOUTH-Dept of Public Works Bridge Street, Sydney Owner-& of T., issued Vol. [03 IVEST Occupier 3 -4 EAST S. & K.L. Beck owners & 6 Elizabeth Street Liverpool Occupier 5 18 Mrs. E. Penney Occupier 78 George Street, Liverpool 6 Chandson Pty. Ltd. Owner 30 Boomerang Street Haberfield 7. н Mrs. K. Bennett owner & 80 George Street, Liverpool Occupier Angelo Amalli 9 16 Absare Il Liverpool Special \$13 Agostino Amalfi 29 Wagle St 96 Boundary La 353 Belmere Ka Cert. 10 Alfredo Amalfi ٩ï Se 7257

Req:R442043 /Doc:PA 043073 PA /Rev:22-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:16-Apr-2018 11:19 /Seq:2 o Ref:Liverpool /Src:M

And I/we further declare, that the annexed Schedule, to which my/sur signature is/anr affixed, and which is to be taken as part of to the extent to this Declaration, contains a full and correct list o commencing with Crown Grant dated 12.4. 1837 Ly Use Regulation No.183 Fol 78 of all settlements, deeds, documents, or instruments, maps, plaus and papers relating to the land comprised dated in this application, so far as I/we have any means of ascertaining the same, distinguishing such as being in my/our possession or ed he ense may lin, an all documents te Crown Grant must be entere-schedule. under my/aur control, are herewith lodged and indicating where or with whom, so far as known to me/us, any others thereof are Grant deposited. Also, that there does not exist any fact or circumstance whatever material to the title, which is not hereby fully and fairly disclosed to the utmost extent of my/our knowledge, information, and helief; and that there is not, to my/our knowledge he ony exception words "except and insert y particulant. and belief, any action or suit pending affecting the said land, nor any person who has or claims any estate, right, title or interest 1he therein, or in any part thereof, otherwise than by virtue and to the extent of some lease or tenancy hereby fully disclosed P in New a his deplaration a attested by the General or W a Notary Instice mini And I/um make this solemn Declaration, conscientiously believing the same to he true. 63 Twelfth day of **DATED** at LIVERPOOL. this (RULE UP ALL BLANKS BEFORE SIGNING.) -Made and subscribed by the abovenamed Peter Howard Warren Diat Jaw Signature 6 this 12 Ch day of March 1962 be by Applicant in the presence of " Vann ben 20 To the Registrar-General,---Peter Howard Warren 1/== the above declarant, do hereby apply to have the land described in the above declaration brought under the provisions of the Real Property Act, and request you to issue the Certificate of Title in the name of " myself 81 march this twelft DATED at 1963 Liverpool Witness to Signature Jourin (Signature of Applican •N.B — The Schedule below and Certificate inderseit on fourth page should be also signed. In no case can any alterations, however trifling, be allowed to be made after the application has been once declared, unless all the partles resign and redeclare the same. If it is discovered that any alterations are necessary, the applicant may make a statutory declaration setting out in what manner is declare the opplication to be altered, which declaration will then (unless the Registrar General considers that a fresh application ought to be made) be read as one with the application. (RULE UP ALL BLANKS BEFORE SIGNING.) SCHEDULE REFERRED TO.* (TO BE SIGNED BY APPLICANT IMMEDIATELY BELOW THE LAST DOCUMENT SCHEDULED.) To include not only Title Deeds, Probates, Letters of Administration, etc., but also the Surveyor's Plan or Statement in fleu thereof. • For the particulars with which this Schedule must comprise, see concluding part of Declaration, to which particular attention is directed, as any omission or misstatement will render applicant liable to the penalties of false declaration. For Office use only. Registration. Nature of Instrument No. Date. Parties. Book. | No. By whom Produced TO ONE Crown to John Howley as ı 12.4.1837 Grant No. 183 Fol. 78 2 8.12.1654 Certificate of redemption of quit rent. 1/ Cendorsed on o Doc 5.4.39 3 Mtge. John Rowley to Pater William Plomer Ø 731 by Peter William Plomer discharge Mortgage 4 27.8.39 Deed Pol P 420 6.39 P 5 Mtge. John Rowley to John Malcolm -409 6 John Rowley to John Malcolm S 1.6-40 Further 225 Charge Should any transaction affecting the land in this application be entered into or any alterations in the buildings or fences be made subsequent to the date of the application, but prior to the issue of the Certificate of Title, the Registrar General should be informed immediately, and all documents evidencing such transaction should be lodged. St7257-2

- INO	. D	se.	Nature of	E SIGNED BY APPLICANT, IF UTILISED, IMMEDIATELY BELOW THE LAST DOCUMENT SCHE	liegist		For Office use out	-
÷	1	0.		Rel.	1	362	DD	-
7.	125.	3,41	Cow CE	John Rowley, Sarah Rawley & John Malcdm Jand William Pritchard	1	002	22	
1				with the Register General with the exception of 2 on 25.2.1865			1 4 11	
8.	5.1	2.54	.Convey-	William Pritchard to Fredrick Kingston Offiver	35	133	Xe not aff	
9.	5.1	.55.	ance	William Pritchard to Joseph Cartwright Rossiter (Eligaieth-	36	98		
10.	□ ≤ 6°2		Probate	of Will of William Pritchard Granted to Mary Pritchard by				
1				District Registor of the Court of Probate at Bristol in England.				
11.	29.	8.64		Letters testimonial with will annexed by William Pritchard granted under seal of Bristol District.	-			
12.	10,	1,65	of Admin			K.		
13.	1/24.	2.77	Convey	William Spouncer, Louisa Spouncer and Samuel Rampley Fiske	167	9	1	
14	18:	3.1 9	og Proba	Fisker of Will of Samuel Rampley Fisher granted by Supreme Court				
15}	Xm	13.1	0 Conve	of New South Wales granted to Alfred Cloke. Alfred Cloke to Dacres Fitzherbert Evans.	924	385		
103	01.	10.1	Ance	Daones Fitchenbert Frans			12	
16.	4.5	.28.	Probate	of Will of Dacres Fitzherbert Evans granted to Una Constance Evans and Doris Janet Evans				
17.	/26.	2:30	Convey-	From Dacres Fitzherbert Evans, Una Constance Evans and Doris			1	
	1/		ence	Janet Evans to Ernest Albert Groves Ernest Albert Groves to Marjorie Winifred Elkington	1750 2125	77 1. 376		
18. 19.	11	6.50 6.50		Marjorie Winifred Elkington to Bank of Hew South Wales	2125	377	V	
201		상품료	. D/Mtge	Bank of New South Wales to Marjorie Winifred Elkington	2623	100	V	
ź1.	127.	7.62	Convey-	Merjorie Winifred Elkington to Peter Howard Warren	2623	156	~	
22.	1/17.	3.50	Surveyor	ca Certificate by E.C. Banks & Company			1	
23.	7 10.	5,62	Plan	he Compared B A Homen	2644	31	× .	
22	712.	3.63	broce ?	Marjorie Winifred Elkington to Peter Howard Warren		21	-	
2			Catmo	Documentary title to part of a lane remains in the Estate of William Pritchord by virtue of the abovementioned lease and release registered Book V No. 362,				
				As to a third part. (dud 17-5-1885)			1	
4.	\$.1.	185	Conve	vance William Pritchard to Joseph Cartwright Rossitery. Order for sale of Real Estate of J.C.Rossiter	36	98	Stree abour	-
26.3	11.5.	191	Convey		934	407		
27.41 28	29.0.	1011	Morte	Anglement / sulking	061 061	727 733	1	
				rge of Mortgage; F.E.Bray and F.W.Todhunter to H.			1	
*	1			Wadsworth 1	169 160	692		
				i col whilemena	169 270	693 453	1	
					273	936	w.	
				ge, M.W. Hammond to Government Savings Bank of N.S.W. 1	273	937	~	
4.:	31.7.	92	Dioch	to M.W. Hommond	569	921	V 8	
5.	31.7.	192	Fortge	re, M.W.Hemmond to Commonweelth General Assurance	569	922	1	
6.:	15.9.	94	Disch-r	we of Mortgege, Commonwerlth General Assurance	901	276	1	
7.	客.9.	1944	Mortg	ge, M.W.Hammond to Commonwealth General Assurance				
		-		Corporation Limited 1	901	277		
		2						
				10- See indorsement overleaf.				×

Req:R442043 /Doc:PA 043073 PA /Rev:22-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:16-Apr-2018 11:19 /Seq:3 Ref:Liverpool /Src:M

No. Date	Nature of Instrument	Parties	Registra	uno omlar
a a' cer " a â Nav er a c erta a	Tue et diverte	and the second	Book	No. Use only By whoma
38.30.6.1948	Discharge of V Mortgage	Commonwealth General Assurance Corp. Ltd. to M.W.Hammond - 201901-277.	2058 8	96 V
39,10.8.1953	Conveyance	M.W.Hammond to Henry Lesbester-	2259 4	45
40.30.7.1953	Mortgege	H. Lesbester to Associated Dominions). assurance society Ptg - Limited - J	2259 4	46 V
41.13.11.1953	Discharge of Mortgage	Associated Dominions to H.Leabcater	2270 1	164 V
42.13.11.1953	Conveyance	H. Leabeater to Guiseppe Amalfi, Angelo Amalfi, Amortine Salvatori Amalfi and Alfredo Amalfi and	2271 e	06 1
	പ്പം കാ നംബം കുറെകു	Agostino Amalfi -		
la av 11 s Seu				i a e
2 A	ध्य प्रदर्भ को _भ ा			ਿ ਸੁਰੂ ਹੈ। ਵਾਸ ਕਿ ਸਿੰਘ
			8 4 4 Å	8 - ^{III} - 8 e 3
್ಯ ಪೇ ಸ್ಥಾನಿಗ		June Cumer		
	1		19 J 8 B	
	4 a	- 13 15 10 10 D		പ്രദ്യങ്കും പെടും പ്രത്തില് പ്രത്തില് പ്രത്തില് പ്രത്തില് പ്രത്തില് പ്രത്തില് പ്രത്തില് പ്രത്തില് പ്രത്തില് പ്ര
	Acedo 40	000. 13, 15, 17, 18, 19, 21, 22, 9	Hale, \$5	st. deco.
1				1427
	13 CLY	. Alfred Chorles Collem		7-3-63
43-4 3	63 mor and	Collim	mr.	and the second sec
44 11 - 3 6	a state where	Charles Thomas tool	ore-	and the second secon
	3 . 4 . 4	Charles Thomas Colles	no	
44 11- 3 6	3 4 4 3 4 4	Charlo Thomas Coller duque Moria bollor Many Schell	no	

Red Sacs 13.15 17 -22, 43 - 48. Docs 1-23-5607 -00 pht 22 15/3/1963-

49 15/3/63. Atat Blech by Marjorie alinifred El 50 16/3/65 Alar Sector Dry Becquet 29/3/63 51 14/3/13 Mar Alech by alpest becquet. 52 12/3/63 towegance Howard hashes i Merifred 2644 - 31:4 53 27/3/63 Stat Sector by Fred Beale Carnicoat llaway + Cort 3/4/67 54 16/4/63 Stat Dich by Doris May alchin 55 29/8/27 Stat Sect by Darres Fitzherbert Evans 56 23 B/65 PX Susaffe Chraftis and 24/4/03 116 9

Riead Does 48, 50 + 51 Gallaways 4 4/5/1915 M:DIS/ ∍ਸ :bas

Req:R442043 /Doc:PA 043073 PA /Rev:22-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:16-Apr-2018 11:19 /Seq:6 Ref:Liverpool /Src:M tel Cro) 0.111 extige I certify that the within application is correct for the purposes of the Real Property Act, 1900.† (Signature) and the set S SIGNATURE (RULE UP ALL BLANKS BEFORE SIGNING, EXCEPT SPACE IN SCHEDULE BELOW APPLICANT FEES. Office Copy of Plan (when a Plan is furnished) _____ Preparation of Plan (when a Plan is not furnished) Advertisement, unless dispensed with ______ Lodgment fee ._____ 2 10 1 0 1 0 3 0 00000 0000 1 State to whom all correspondence relating to this Application should be sent, with address, as under, viz :-Sydny DF217980 allow all Name Merser & Gaikie Mamlek Solicitors Occupation Warwick Hourse, George Street, Liverpool. Post Town V. C. N. Blight, Government Printer

Req:R442460 / Ref:Liverpool	/Doc:PA 056264 PA /Rev:22-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:16-Apr-2018 11:42 /Seq:
使的游戏	on receipt NO. G. 457 822. 28/7/82. 0- 1-He. He was
TRAR	EWSOUT (WATT STORE
ST AL	NEW SOUTH WALES
	PRIMARY APPLICATION
SOUT	SECTION 14, REAL PROPERTY ACT, 1900
Typewriting and hand writing should be class legible and in permanen blacks soot-copying ini	\$40 or baid an CAR (440). 56264 CAUTION-Severe penalties are provided by the Crimes Act, 1900, and the of 11-12-11
binds not at permanent binds not copying fai No alternations about to conde by creation about worder dependence of worder binds faither of resting the alternation faithas for the margin.	Real Property Act, 1900, for procuring a certificate of title through fraud.
address of person of socreporation entitled h	PETER WARREN (PROPERTIES) PTY LIMITED & COMPANY duly incorporated and
the land. If a person is entitled the occupation should also be stated.	aving its registered office at 96 Plincheth Street it.
(b) Oire an adaptat description of the land e.g. Letin Deposito Plat for ap purtrant setsment do	,这些你们就是你们的,你们们还是你们的我们就能说这么,你就是我们的你的?""你们,你们这些你们的你,你们是你们的你们,你们不能不是你们的?""你们你们不是我能能是我
complian it should be	access applies to mate the anacamentomer med or onget ander the provisions of the Reat Property Act, 1900
disclosed and edequate description of its location abouid b eivenjits jocation about also be abown on the plan.	
The application should be mocomiumled by plan of auvery unless the Registrar Content has interesting to the source of the interesting of the source of the boot normally required where the application	County of CUMBERLAND Parish of ST LUKE being®
therewith A place is not normally required where the epitication relates to hand in a qualified continues	Lot 10 in Survey Plan of Alex Gerard Lebon dated 4th March 1981 (Surveyors reference: 140-875/2386)
where the application relates to land in a qualified continents of the relation of the second the relation of the second second the relation of the second second the relation of the second second continues of the second second continues of the second sec	Ser. 47 p. 72 John Rowley
Lasppicable.	part
(d) Insert reflecence to portion or allotment, or if none, to number of scree granted.	by Crown grant dated the Twelfth day of April 1837
(c) Name of granise.	and requests that the certificate of title issue in the name of
(1) If the certificate of the k required to know	0
applicate, frame - the applicate - cohermice bere frame the full name of the perces or	the Applicant
(f) If the certificate of title is required to sense to fivore of the explicit of the sense of the sense the full name of the person or corporation in whose name the certificate of title is to issue. In the cost of source, the full occurrent on source, the full occurrent on source, the full occurrent on source, the full	a <u>andre sa kana kana kana kana kana kana kana k</u>
occupation should also be stated. If more than one nomines, state whether as foling tenants or	and in support of this application I/We ⁽⁹⁾
Uoless otherwise stated, tenants in common, Uoless otherwise stated, tenants in common will be presented to hold in soluti shares.	Peter Howard Warren of 6 Orange Grove Road, Cabramatta, NSW, Company Director
and neoupation of docimant.	solemnly and sincerely declare that-
(h) If a lessor catair, alter nocordingly,	2. There is no person in possession or occupation of the said land or any part thereof adversely to the estate or interest therein of the
(i) Delets whichever is fospplicable.	 applicant. The said land is now Φ <u>occupied by the persons specified in the First Schedule as occupiers.</u>
	3. The said land is now 0, where the second second in the risk benefities as occupies.
na an Arana Reconstruction (188	4. There does not exist any lease or agreement for lease of the said land for any term exceeding a tenancy for one year, or from year, to year, except as set out in the First Schedule.
	5. There does not exist any right of way, right of drainage or other easement or any restrictive covenant affecting the said land, except as disclosed in the First Schedule.
() Should any transac- tion affecting the land in this scriptionion ho entered into or any alterations in the buildings of fances bo made subscenent to the	6: There does not exist any mortgage, lien, writ of execution, order, charge, encumbrance, will, settlement, deed, writing, contract, or dealing giving any right, claim or interest in the said land, or any part thereof, to any person other than the applicant except as set out in the First Schedule; nor, to the best of my knowledge and belief, is there any action, proceeding or suit pending which affects
but prior to the application, but prior to the lange of the certificate of title. the Registrar Occaral about the total applications	or could affect the said land, or any person other than the applicant who has or claims any estate, right, title or interest therein, except as disclosed in the First Schedule. ^(b)
should be informed humediately, and all documents evidencing such transaction should be lodged.	7. There is no resumption or instrument whereby minerals or substrata have been excepted or reserved to any person, except as disclosed in the First Schedule,
(k) The declaration may be qualified, e.g. by marting the words "commencing with con-	8. The Second Schedule contains a full and correct list ⁰⁹ Cert. of T., issued Vol. 14946 Fol. 113 Dated 16-12 -1982
verywoot dated realistined Book No or as the case may Su. See also pours on book rage hereof.	commencing with Mortgage dated 15th September 1941 registered Book 1901 No 277
	of all settlements, deeds, documents, instruments, maps, plans and papers relating to the said land so far as I have any means of ascertaining them. All such documents as are in my possession or under my control are lodged herewith; the whereabouts of all other documents listed, so far as is known to me, is stated in such list.
87 AUDS & 1877	9. The applicant has not become bankrupt or assigned his estate for the benefit of creditors.

Req:R442460 /Doc:PA 056264 PA /Rev:22-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:16-Apr-2018 11:42 /Seq:2 0 Ref:Liverpool /Src:M 187 1 3 3 10. The information shown in the Schedules hereto is to be taken as part of this declaration. -19 II_ I have been authorised by power of attorney dated the duy of To-make this-application on behalf-of the applicant, and I have received no notice of revocation of such authority D I make this solemn declaration conscientiously believing the same to be true and by virtue of the Oaths Act, 1900,(a) and certify this application to be correct for the purposes of the Real Property Act, 1900,40 and I hereby undertake to notify the Registrar General promptly of any further interest in the said land created after the making of this my declaration and before issue of the certificate of title. day of OCTOBER 1981, LIVERIPOOL the TWENTY-NINTH Made and subscribed at in the presence of Signature of Witness TOAN STANLEY JONE ked agent of applicant() Abolicant Name of witness (BLOCK LETTERS) USTICE OF THE PEACE Qualification of witness CONSENT OF MORTGAGEE THE STATE BANK OF NEW SOUTH WALES , being the mortgagee under mortgage registered Book 3095 Number 697 , hereby joins in and consents to this application subject to:-(i) registration of a mortgage-under-the Real-Property-Act, 1900-in-substitution for such mortgage, OR(s) entry on the certificate of title to issue of a notification relating to such mortgage, AND (ii) delivery to me of the certificate of title. Mortgagee ETTER A DESIG Witness ale Bank of New South Wales Section 12 of State Bank Act 1981 FIRST SCHEDULE and: 1 PARTICULARS OF SUBSISTING INTERESTS (LEASES, EASEMENTS, MORTGAGES AND OTHER MATTERS REFERRED TO IN CLAUSES 3 TO 7 INCLUSIVE OF DECLARATION) Nature of entitlement Particulars of instrument (if any) by which entitlement created(**) Full name and address (of occupier, lessee, mortgagee, etc.) "occupier", "lessee" "mortgagee", etc.) Conveyance Book 2855 PETER WARREN (PROPERTIES) PTY Owner No 238 LIMITED

1000

SECOND SCHEDULE (See notes on back page hereof)

DOCUMENTS REFERRED TO IN CLAUSE & OF DECLARATION ÷.

Documents Nos. Documents Nos.

Documents Nos.

To be

completed by declarant

hereunder LODGED HEREWITH

hereunder WHEREABOUTS UNKNOWN

hereunder PERMANENTLY LODGED

Receipt Nos.

2016	257	100		RURAL	BANK
11.0	366	121100	12122	1 11 M. M. P. C.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	1.10	The second	100	and second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22.23	1.45	200	1.1		10.44

Ŧ

626

Septer.

5

No. Date document	Trate?	Bale Salts	Nature of		Regist	ration	FOR OFFICE USE O
30.6.1948 30.6.1948 30.6.1948 10.8.1953Discharge mary whillimene Hammond MARY WHILIMENE HAMMOND MARY WHILIMENE HAMMOND MARY WHILIMENE HAMMOND MARY WHILIMENE HAMMOND LEABEATO (*)2058 20259596 445(*)20.7.1953 20.7.1953 (*)Mortgage HENRY LEABEATO to ASSOCIATED DOMINIONS ASSURANCE SOCIETY PTY LIMITED ASSURANCE SOCIETY PTY LIMITED (*)2058 2259596 445(*)20.7.1953 20.7.1953 (*)Mortgage MARY WHILIMENE HAMMOND to HENRY LEABEATO to ASSOCIATED DOMINIONS ASSURANCE SOCIETY PTY LIMITED ASSURANCE SOCIETY PTY LIMITED (*)2259 (*)446 (*)(*)20.7.1953 (*)Mortgage MARY WHILIMENE HAMMOND AMALFI, SALVATORE AMALFI & ALFREDO AMALFI SALVATORE AMALFI & ALFREDO AMALFI SALVATORE AMALFI & ALFREDO AMALFI (*)2270 (*)764 (*)(*)25.9.1987 Conveyance Conveyance (*)As above ANGELO AMALFI & ALFREDO AMALFI & DETER WARREN (PROPERTIES) PTY LIMITED 28.7.1968 Mortgage (*)2855 (*)238 (*)(*)3.7.1968 Mortgage (*)Mortgage PETER WARREN (PROPERTIES) PTY LIMITED to TOTAL(AUSTRALIA) LIMITED SORE SANCE SCIENTY SORE SANCE SCIENT & SORE SANCE SCIENT SORE SANCE SANCE SCIENT & SORE SANCE SCIENT SORE SANCE SCIENT & SORE SANCE SCI	No.	Date		Parties	Book	No.	By whom produ
B: 4.1953 Stat Dec ID. 8.1953 MARY WHILIMENE HAMMOND LEABEATO 2259 445 B: 20.7.1953 Mortgage HENRY LEABEATO to ASSOCIATED DOMINIONS ASSURANCE SOCIETY PTY LIMITED 2259 446 6 13.11.1953 Mary WHILIMENE HAMMOND to HENRY 2259 446 7 13.11.1953 Mortgage HENRY LEABEATO to ASSOCIATED DOMINIONS ASSURANCE SOCIETY PTY LIMITED 2270 764 8 25.9.1987 Conveyance HENRY LEABEATO to CUISEPPI AMALFI. SALVATORE AMALFI AGOSTINO AMALFI. SALVATORE AMALFI & ALFREDO AMALFI. 2271 806 8 25.9.1987 Conveyance ANGELO AMALFI. AGOSTINO AMALFI. SALVATORE AMALFI & ALFREDO AMALFI IO PETER WARREN (PROPERTIES) PTY LIMITED 2893 727 9 3.7.1968 Mortgage PETER WARREN (PROPERTIES) PTY LIMITED 2893 727 10 26.4.73 Discharge PETER WARREN (PROPERTIES) PTY LIMITED 3095 696 11 26.4.73 Mortgage FETER WARREN (PROPERTIES) PTY LIMITED 3095 687 2 2.3./466 TY G. Amalfi: (607336) 3095 687 2 2.3./466 TY G. Amalfi: (607336) 3	P	15.9.1941	Mortgage		1901	277	
 10.8.1953 Conveyance MARY WHILITERE HAMMOND to HENRY 2259 445 LEABEATO 20.7.1953 Mortgage HENRY LEABEATO to ASSOCIATED DOMINIONS 2259 446 ASSURANCE SOCIETY PTY LIMITED 2270 764 (a) 13.11.1953 Dischargo As above 2270 764 (b) 13.11.1953 Conveyance HENRY LEABEATO to GUISEPPI AMALFI, 2271 606 (c) 13.11.1953 Conveyance HENRY LEABEATO to GUISEPPI AMALFI, 2271 606 (c) 13.11.1953 Conveyance ANGELO AMALFI, ANGELO AMALFI & 2855 238 (c) 25.9.1987 Conveyance ANGELO AMALFI, ANGELO AMALFI (as 2855 238 (c) 25.9.1987 Conveyance ANGELO AMALFI & ALFREDO AMALFI (as 2855 238 (c) 25.9.1987 Conveyance ANGELO AMALFI & ALFREDO AMALFI (as 2855 238 (c) 25.9.1987 Conveyance ANGELO AMALFI & ALFREDO AMALFI (as 2855 238 (c) 25.9.1987 Conveyance ANGELO AMALFI & ALFREDO AMALFI (as 2855 238 (c) 25.9.1987 Conveyance ANGELO AMALFI & ALFREDO AMALFI (as 2855 238 (c) 25.9.1987 Conveyance ANGELO AMALFI & ALFREDO AMALFI (as 2855 238 (c) 25.4.73 Discharge PETER WARREN (PROPERTIES) PTY LIMITED 2893 727 to TOTAL(AUSTRALIA) LIMITED 3095 696 (1) 26.4.73 Discharge as above to RURAL BANK OF NEW SOUTH WALES 3095 697 (c) 26.4.73 Mortgage PETER WARREN (PROPERTIES) PTY LIMITED 3095 697 (c) 21.3.11.1952 Conveyance ALE ANALFI (COTA336) (c) 22.3.1966 (F) 4.1.101 (F) 500 (F) 500	2				2058	596	
(6)13.11.1953DischargeAs above2270764(7)13.11.1953ConveyanceHENRY LEABEATO to GUISEPPI AMALFI, ANGELO AMALFI, AGOSTINO AMALFI, SALVATORE AMALFI2271606(8)25.9.1987ConveyanceANGELO AMALFI, AGOSTINO AMALFI SALVATORE AMALFI22855238(8)25.9.1987Conveyance executor of the estate of Guiseppi Amalfi, AGOSTINO AMALFI, SALVATORE AMALFI & ALFREDO AMALFI (as executor of the estate of Guiseppi Amalfi, AGOSTINO AMALFI, SALVATORE AMALFI & ALFREDO AMALFI to PETER WARREN (PROPERTIES) PTY LIMITED to TOTAL(AUSTRALIA) LIMITED to TOTAL(AUSTRALIA) LIMITED to RURAL BANK OF NEW SOUTH WALES SOUTH WALES2893727(10)26.4.73Discharge to TOTAL(AUSTRALIA) LIMITED to RURAL BANK OF NEW SOUTH WALES SOUTH WALES3095696(11)26.4.73Nortgage to RURAL BANK OF NEW SOUTH WALES to RURAL BANK OF NEW SOUTH WALES SOUTH WALES3095697(12)2.3.1466MY JUL ULUG. Amalfi: (GO7336) ULU500251025102(12)2.3.1466MY JUL ULUG. Amalfi: (GO7336) ULU5102510226/7/92(13)Letter(a) ULUStamp Datico office & Linepool Capies29/9/6249/9/62(13)Connecil CapiesConnecil Capies53/9/2020(13)Connecil 	٢			MARY WHILIMENE HAMMOND to HENRY	2259	445	
 13.11.1953Conveyance HENRY LEABEATO to GUISEPPI AMALFI, ANGELO AMALFI, AGOSTINO AMALFI, SALVATORE AMALFI & ALFREDO AMALFI 2271 606 25.9.1987 Conveyance ANGELO AMALFI, ANGELO AMALFI & ALFREDO AMALFI 8 25.9.1987 Conveyance ANGELO AMALFI, ANGELO AMALFI & ALFREDO AMALFI 8 25.9.1987 Conveyance ANGELO AMALFI, ANGELO AMALFI & ALFREDO AMALFI 8 25.9.1987 Conveyance ANGELO AMALFI, ANGELO AMALFI & ALFREDO AMALFI (as executor of the estate of Guiseppi Amalfi), AGOSTINO AMALFI, SALVATORE AMALFI & ALFREDO AMALFI to PETER WARREN (PROPERTIES) PTY LIMITED UNITED TO TOTAL(AUSTRALIA) LIMITED TO TOTAL(AUSTRALIA) LIMITED TO TOTAL(AUSTRALIA) LIMITED TO TOTAL (AUSTRALIA) L	6	20.7.1953	Mortgage		2259	446	$\{ \hat{\sigma}_{i}^{(t)} := \hat{\sigma}_{i}^{(t)} : i \}$
ANGELO AMALFI, AGOSTINO AMALFI, SALVATORE AMALFI & ALFREDO AMALFI SALVATORE AMALFI & ALFREDO AMALFI (as 2855 238 Amalfi), AGOSTINO AMALFI (as 2855 238 Amalfi), AGOSTINO AMALFI, SALVATORE AMALFI & ALFREDO AMALFI to PETER AMALFI & ALFREDO AMALFI to PETER AMALFI & ALFREDO AMALFI to PETER AMALFI & ALFREDO AMALFI to PETER (amalfi), AGOSTINO AMALFI to PETER AMALFI & ALFREDO AMALFI to PETER (amalfi), AGOSTINO AMALFI to Amalfi), AGOSTINO AMALFI (amalfi), AGOSTINO AMALFI to Amalfi), AGOSTINO AMALFI (amalfi), AGOSTINO AMALFI to PETER (amalfi), AGOSTINO AMALFI, AGOSTINO AMALFI (amalfi), AGOSTINO AMALFI, AGOSTINO AMALFI (amalfi), AGOSTINO AMALFI, AGOSTINO AMALFI (amalfi), AGOSTINO AMA	(6)	13.11.1953	Discharge	As above	2270	764	
executor of the estate of Guiseppi Amalf1, AGOSTINO AMALF1, SALVATORE AMALF1& ALFREDO AMALF1 to PETER WARREN (PROPERTIES) PTY LIMITED 9 3.7.1968 Mortgage PETER WARREN (PROPERTIES) PTY LIMITED 2893 727 to TOTAL(AUSTRALIA) LIMITED 3095 696 (11 26.4.73 Discharge as above PETER WARREN (PROPERTIES) PTY LIMITED to RURAL BANK OF NEW SOUTH WALES 502 5/102/162 12 2.3.1966 (PSU) DOC 12 red 200 (South 4 25) 12 2.3.1966 (PSU) DOC 12 red 200 (South 4 25) 13 Letter(a) Stamp Dates office a timeynol (copien city Council DOC 13 - Col 200 (South 4 25) Cancelled dow 7,8,9,10 cent to arking	(7)	13.11.1953	Conveyance	ANGELO AMALFI, AGOSTINO AMALFI,	2271	606	
10 26.4.73 Discharge as above 3095 696 (11 26.4.73 Nortgage PETER WARREN (PROPERTIES) PTY LIMITED 3095 697 2 2.3.1966 (Pyg) of G. Amalfi': (607336) Dec 12 red see sheet 425 22 0.0. all 12/22 (13) letter(2) Stamp Daties office & tireyrool (copier. city Council. Dec 13 - cet see sheet 526 P27 50 9/9/82 cancelled dow 7,8,9,10 cet to arhive	<u>(</u> ®	25.9.1937	Conveyance	executor of the estate of Guiseppi Amalfi), AGOSTINO AMALFI, SALVATORE AMALFI & ALFREDO AMALFI to PETER	2855	238	
10 26.4.73 Discharge as above (11 26.4.73 Mortgage PETER WARREN (PROPERTIES) PTY LIMITED to RURAL BANK OF NEW SOUTH WALES 502 5102 5102 5102 500 500 500 500 500 500 500 500 500 5	9	3.7.1968	Mortgage	PETER WARREN (PROPERTIES) PTY LIMITED	2893 -	727	
12 2.3.1966. My J G. Amalfi: (607336) Dex 12 red see cheet 425 122 510. all/2/122 (13) letters) stamp Duties office & timeyword (copies, city council Doc 13 - col see cheet 526 P27 510. 9/9/82 cancelled dow 7,8,9,10 cent to arhives	10	26.4.73	Discharge		3095	696	$\mathcal{T}_{i,0}^{(m)} \mapsto \mathcal{T}_{i,0}^{(m)} \mapsto \mathcal{T}_{i,0}^$
(2) 2.3.1966. "But G. Amalfi': (607336) Dex 12 red see sheet 425 127 100, eG/2/02 (1) letters stamp Duties office & timeyood (copies, city council. Doc 13 - city council. concelled dow 7,8,9,10 cert to arking	(11)	Maria Can I	Mortgage	to RURAL BANK OF NEW SOUTH WALES			512.21104
Box 12 red ace shoot 425 P27 400, et/2/92 Better(2) Stamp Daties Office & tireypool (copies, city Council Doc 13 → cot. ace sheet 5 26 P27 500, 9/9/82 carrelled dow 7,8,9,10 cent to arhives		CCS	- 61 m		as and		
13 letter(a) stamp Daties Office & tineymol (copies. cipy Council. Doc 13 - cet: eee sheet 526 per 10. 9/9/02 carrieled dow 7,8,9,10 cent to arhives	(P)	Steal Indiana second	will.	G. Amalfi: (607336)			1- 10-
- Doc 13 - carriel dow 7,8,9,10 cent to arking	(3)			Stamp Duties office & tiveyool	astroames	- Pito	his fall the
carrelled dois 7,8,9,10 cert to arhives	<u>teda s</u> e si	Poc	Coopies.			91	ala
방법은 정말을 수가 다시는 것이 같다. 것은 것은 것은 것이 있는 것이 같은 것이 같이 같이 같이 같이 없는 것이 같이 많이 있는 것이				and the second		-4	1
all other does to remain and 23/2/02					2 fate	BIC 4	<u>مر</u>
27/2/2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2				all other does to remain			4. 4. 1
					m	23/12/	6 - 1 1
			M Shart ring			11285 11285	

Reg:R442460 /Doc:PA 056264 PA /Rev:22-Jun-2015 /Sts:OK.SC /Pgs:ALL /Prt:16-Apr-2018 11:42 /Seg:4 Ref:Liverpool /Src:M

I	第3月1日	DEPARTMENTAL USE ONLY		記録
Ser.		PRIMARY APPLICATION 56264 Lodged by Hunt + Hunt	1942	
2011/22		DE621840 Address: 50 Budy at alliMTK		C.
witten		LOT 10 UP.021040 DX No. 2-19 Phone No.: 25140711	and a second	E.F.
13	Sec. 20		部时期能	$\{ p^{i} \}$

DEPARTMENTAL USE ONLY

C. N. 1. N.

C. 194 (1.1.) NOTES

你是是

683

1.24.45

· 16.

A. S. Martin A. M. B. M.

1.65 3.5

3 A.

States and States

Documents to be scheduled

Where an applicant claims an estate in fee simple by virtue of a documentary title the Second Schedule should commence with a good root of title at least thirty years old or with a later deed which has already been accepted by the Registrar General in an earlier application. Clause 8 of the declaration should be suitably amendod.

Where the applicant claims title by possession the devolution of the documentary title of the person(s) against whom possession is asserted should be shown in the Second Schedule.

Where the applicant claims the benefit of an appurtenant easement the Second Schedule should contain a reference to the

e fa del de

1. Bit See

0.5

* the deed by which the grantor of the casement acquired title to the servient tenement, and

the Special States

• the deed by which the essement was created.

S. 147 Mar.

1623m

5400

A. 网络花花带根语西方

Sec.

Service 3

the state of the state of the state of the

345

12

al also de mai ala a

2,

Warder Mar Wager of

10 A

125.00

 $h = \epsilon$

des des la la

1.... 영상 영상 (1...)

en hinder den den her

construction of the second

The applicant will be required to establish (e.g. by searches) that the casement has not been determined by surrender, union of tenements or otherwise

Documents to be lodged

Upon lodgment the application should be accompanied by:

 $\mathcal{I}_{2}:=[a_{2})^{-1}+[c_{1}^{2},\overline{a},c_{2}^{2}]^{-1}$

addan gilliges

AT ADDE K 1377 D. WEST, COVERNMENT' PRINTER

* all deeds and other documents evidencing the devolution of title from the abovementioned commencing point;

Deeds and other documents which relate to the period prior to the selected commencing point should not be scheduled in or lodged with this opplication but should be retained in case their subsequent production should be required. 이 일 때 집에 가지 않는 것이 없는 것이 없다. 1. A 1. 64

" any abstract(s) of title in the applicant's possession covering the relevant period; and

the weeks where

* scarches showing the result of searches in the general register of deeds, the register of causes, writs and orders, the register of resumptions and the bankruptcy registers. Sec. 36. 1. 16. 국 대학 대학 등 등 등

Searches

The searches obtained when the applicant or a predecessor in title acquired the land in the application will suffice provided that they commence with a good root of title at least thirty years old or with a later deed already accepted by the Registrar General in an earlier application and, in either case, have been brought up to date or to a recent date. In the case of an application based on possession the searches should show not only the devolution of the documentary title (which in most cases will need to be traced from the Crown grant) but also the result of searches against the applicant and his predecessors in possession. S. Carles and a state

Applicants based upon possession

and the particular de

것같은

There is available upon request at the Examiners Branch a departmental circular containing directions for the guidance of applicants who claim title by possession. the state of the second state of the second state

Destruction of documents lodged with the application Section 4

Upon the issue of the certificate of title the Registrar General will as a general rule destroy those documents which exclusively affect the land in the application (and which accordingly will be totally cancelled pursuant to Section 29 (2), Real Property Act, 1900). However, documents which would otherwise he destroyed may be returned upon request to interested persons. The request (in writing) should specify the documents to be returned and should be made before the processing of the application has been completed. A Long

Req:R420185 /Doc:CT 10307-238 CT /Rev:16-Feb-2011 /Sts:OK.OK /Pgs:ALL /Prt:11-Apr-2018 12:21 /Seq:1 of Ref:Liverpool /Src:M 10307238 TIFICATE OF TITLE NEW SOUTH WALES PERTY ACT, 1900, as amended. 0307 238Vol Fol Application No.43073 238 Edition issued 10-5-1966 MA 20 I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown 20 hoves Witness Jato WARNING THIS DOCUMENT MUST NOT Registrar General. CCT ATITO EDI IN PLAN SHOWING LOCATION OF LAND Vol A (Page Laid Kerb DR21746 ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON ELIZABETH STREET 4 ŝ 535 BA 19100 ad'B 3.1 49 33 2 1 trail 188' 0,4" 133 1172 54'6' Appn ð 40210 ğ ã JUBLS Pri n' 41 MP 5: (0 57 19 71 ğ 78' 46' 35' 40 10 Mr 5 Deck On L ACE Fig & Llegab 3 ស ហ 0 ŝ STREET 9 Nrs E. Perricy and buind . ц Ц In 1974 p ŝ Distali 01.15 50 -9 ð, А 122 No 30 Boomerang St. 0004 (DRC) (D) 5 1 āľ -- 56 8 H (0.5) (COMM BE REMOVED FROM THE LAND TITLES OFFICE 11 - 37 - 31 8 No 60 George St 10 14 10 B h panale 199-16 'n 1 165 A2 zhqned . 69 072 3 rail fance 35-40 - 500 5 è Ş partment of Public Norke BICCE Nast Ę GCOR ä Allotment 2, See, 50 16.3 312 10.000 42 112 BUILDING. 545'10 %* Laid Кеть MOORE STREET. 024 ESTATE AND LAND REFERRED TO PERSONS ARE CAUTIONED AGAINST S Estate in Fee Simple in Lot 1 in Deposited Plan 217460 in the City of Liverpool Parish of St.Luke and County of Cumberland being part of Allotment 1 of Section 50 granted to John Rowley on 12-4-1837. FIRST SCHEDULE (continued overleaf) OF Liverpool, Motor Trader. PETER HOWARD WARREN. Jatas Registrar General. SECOND SCHEDULE (continued overleaf) GRY 1. Reservations and conditions, if any, contained in the Crown Grant above referred to. Jates Registrar General. NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

		1						Mortgage	Caveat	Montgage	-dealed	Any to game	NATURE								Peter Warrer	Commarco		
								2964308	@43822	P725903	1570855	4148 984	INSTRUMENT								Peter Warren (Properties) Pty. Limited	al of fene		
*											aport &	1.3 1966	OATE					v			Pty. Limite	und accoption		
								to A.G.C. (Advances) Limited.	by A.O.C. (Advances) Limited	to A.C.C. (Advances) Limited (1999)	to Piter Howard Warren of Support and Such	T. P. C. (Finance) Ref The sect.	PARTICULARS	SECOND SCHEDULE (continued)		SET ALITA-EALIA			PANPEL I PA		đ	A town him ted	REGISTERED PROPRIETOR	FIRST SCHEDULE (continued)
								30=11=1978	14-11-1970	21 5 1976	6 2.2.1967	10.5.1044	ENTERED								Transfer	hand	NATURE	
						 		A survey and	Same and an original	Junter	Junicon	Jantalan	Ngnature of Registrar-General								P725982	v × 53578)	INSTRUMENT	
								Discharged	Withdrawn	Discharged	Expired	Inchazed										334242 (3	DATE	
							-	S600014	0964305	0964306		1535755	CANCELLATION			1					21-5-1976	à++27.7866	ENTERED	-
	- 29.2.5							America	Aler	- barren	Junion -	Jonestin !	-							5	Instand	Instand	Signature of Registrar-General	
				2		2	ς,								20 1955	Shoople din N	-08 MR	DIM SOENABIN-			Noted 22386 68	Plasman K.		Kabona M

2.002

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

FOLIO: 1/217460

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 10307 FOL 238

Recorded	Number	Type of Instrument	C.T. Issue
5/6/1987		TITLE AUTOMATION PROJECT	LOT RECORDED
5/0/190/		TITLE AUTOMATION TRODECT	FOLIO NOT CREATED
11/4/1988		CONVERTED TO COMPUTER FOLIO	
			CT NOT ISSUED
14/4/1994		AMENDMENT: LOCAL GOVT AREA	
01/1/0000			
31/1/2003	9335942	CAVEAT	
15/2/2007	AC929274	WITHDRAWAL OF CAVEAT	
6/8/2009	AE880181	MORTGAGE	EDITION 1
26/4/2013	AH688949	DISCHARGE OF MORTGAGE	EDITION 2
14/7/2014	AI733107	CAVEAT	
22/9/2015	AJ574911	WITHDRAWAL OF CAVEAT	
	AJ574912		
22/9/2015	AJ574913	MORTGAGE	EDITION 3
26/8/2016	AK703807	CAVEAT	
20/0/2010	11(/0500/	Chvini	
24/4/2017	AM327007	CAVEAT	
20/11/2017	M007015	NIMUDDAMAI OF CAMEAN	
20/11/2017 20/11/2017		WITHDRAWAL OF CAVEAT WITHDRAWAL OF CAVEAT	
20/11/201/	12103,310	WITHER OF CRATE	

*** END OF SEARCH ***

Liverpool

PRINTED ON 11/4/2018

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 968(2) of the Real Property Act 1900.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 1/217460

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
16/4/2018	1:13 PM	3	22/9/2015

LAND

_

LOT 1 IN DEPOSITED PLAN 217460 LOCAL GOVERNMENT AREA LIVERPOOL PARISH OF ST LUKE COUNTY OF CUMBERLAND TITLE DIAGRAM DP217460

FIRST SCHEDULE

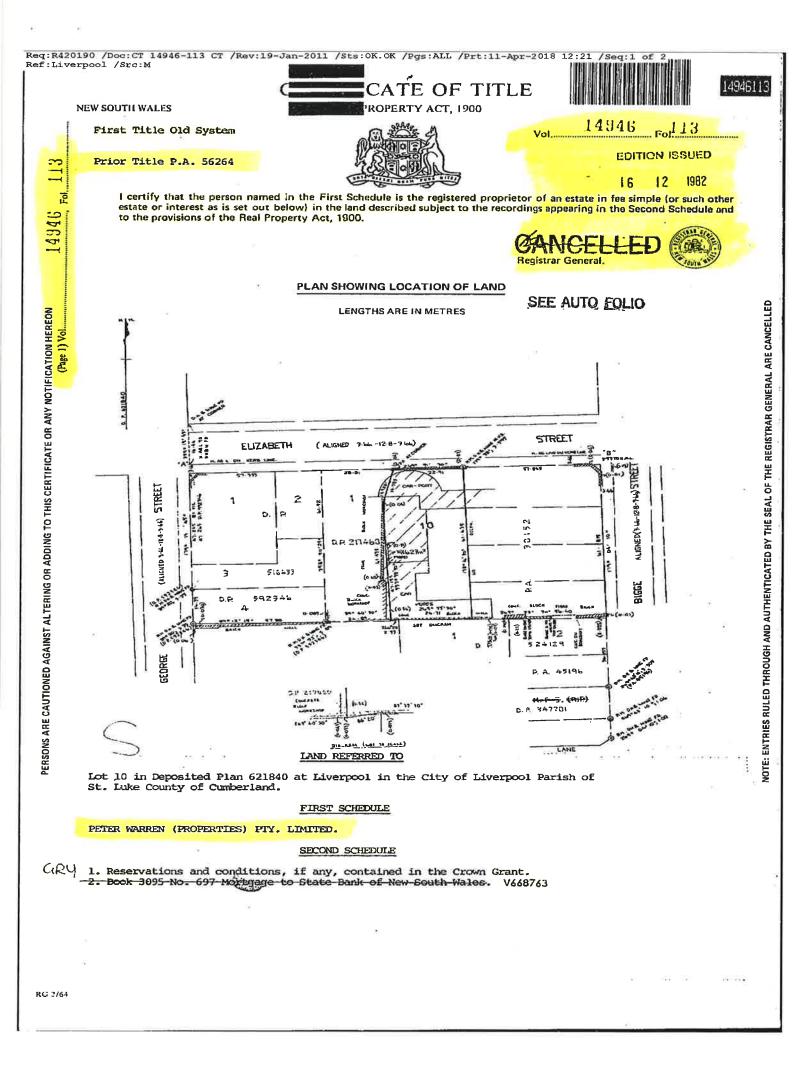
ELIZABETH STREET PARTNERSHIP PTY LTD

(T AJ574912)

SECOND SCHEDULE (2 NOTIFICATIONS) ____

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 AJ574913 MORTGAGE TO COMMONWEALTH BANK OF AUSTRALIA

NOTATIONS ------


UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Liverpool

PRINTED ON 16/4/2018

* Any entries preceded by an asterisk do not appear on the current edition of the CertIficate of Title, Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

erpool /Src:M: 2 of 2 pages)	v	Vol	14946 F	" <u>113</u>
	**************************************	1.		.81 D. West, Government I
	FIRST SCHEDUL			
2 · ·	REGISTERED PROPRIETO)R	34)	Registrar Ge
		2	3 2	
		2	2	
			3	
				1
			*	
	• 244 T •			
	SECOND SCHEDULE	E (continued)		
	PARTICULARS		Registra	ar General CANCELLAT
	12			- 1 °
		0	2	
			2	
	CANCE SEE AN	ILED		
	CANCE	L		
	U.			
	- N	ITO FOLIO		
20 20	SEE AL	, , , , , , , , , ,		
			2 00	1
			1	
	NOTATIONS AND UNREGIST	ERED DEALINGS		- 101 VIII
R.				
ξ. ξ				

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE ------11/4/2018 12:19PM

FOLIO: 10/621840

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 14946 FOL 113

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
20/9/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
19/5/1994		AMENDMENT: LOCAL GOVT AREA	
31/1/2003	9335942	CAVEAT	
15/2/2007	AC929274	WITHDRAWAL OF CAVEAT	
6/8/2009	AE880181	MORTGAGE	EDITION 1
26/4/2013	AH688960	DISCHARGE OF MORTGAGE	EDITION 2
14/7/2014	AI733107	CAVEAT	
22/9/2015	AJ574911	WITHDRAWAL OF CAVEAT	
22/9/2015		TRANSFER	
22/9/2015	AJ574913	MORTGAGE	EDITION 3
26/8/2016	AK703807	CAVEAT	
24/4/2017	AM327007	CAVEAT	
20/11/2017 20/11/2017	AM897915 AM897916	WITHDRAWAL OF CAVEAT WITHDRAWAL OF CAVEAT	
,,,,,			

*** END OF SEARCH ***

Liverpool

PRINTED ON 11/4/2018

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900,

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 10/621840

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
16/4/2018	1:13 PM	3	22/9/2015

LAND

LOT 10 IN DEPOSITED PLAN 621840 AT LIVERPOOL LOCAL GOVERNMENT AREA LIVERPOOL PARISH OF ST LUKE COUNTY OF CUMBERLAND TITLE DIAGRAM DP621840

FIRST SCHEDULE -----

ELIZABETH STREET PARTNERSHIP PTY LTD

(T AJ574912)

SECOND SCHEDULE (2 NOTIFICATIONS)

RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) 1

AJ574913 MORTGAGE TO COMMONWEALTH BANK OF AUSTRALIA 2

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Liverpool

PRINTED ON 16/4/2018

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1

APPENDIX E

SafeWork NSW Dangerous Goods Search

Locked Bag 2906, Lisarow NSW 2252 Customer Experience 13 10 50 ABN 81 913 830 179 | www.safework.nsw.gov.au

Our Ref: D18/109512 Your Ref: Sharon Li 24 April 2018

Attention: Sharon Li El Australia Suite 6.01 55 Miller St Pyrmont NSW 2009

Dear Ms Li

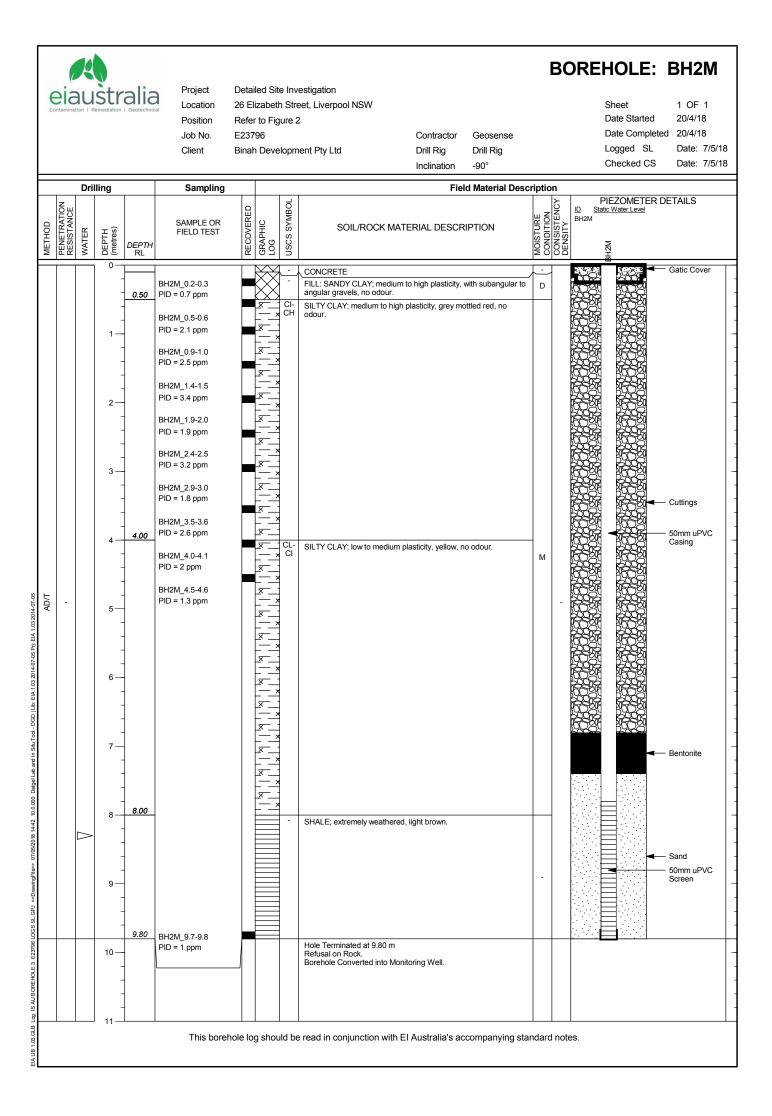
RE SITE: 26 Elizabeth St Liverpool NSW

I refer to your site search request received by SafeWork NSW on 11 April 2018 requesting information on Storage of Hazardous Chemicals for the above site.

A search of the records held by SafeWork NSW has not located any records pertaining to the above mentioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email <u>licensing@safework.nsw.gov.au</u>

Yours sincerely


Customer Service Officer Customer Experience - Operations SafeWork NSW Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1

> APPENDIX F Borehole Logs

	Conta	ia		str	Geotechni	Project Location Position Job No. Client	26 E Refe E237	lizabet r to Fiç 796	h Stro gure 2	estigation eet, Liverpool NSW 2 Contractor Geosense nent Pty Ltd Drill Rig Drill Rig Inclination -90°		BC	She Dat Dat Log		BH1M 1 OF 1 20/4/18 20/4/18 Date: 7/5/18 Date: 7/5/18
			Dril	ling		Sampling				Field Material Desc			DIE7	OMETER DE	
	PENETRATION	RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	ID <u>Static Wi</u> BH1M	ater Level	- 17 41-0
EA LIB 103.GLB Log IS AU BOREHOLE 3 E23796 LOGS SL.GPJ <-ChawingFile>> 07/05/2018 14/41 10.0.000 DatgetLab and in Stu Tod - DGD [Lib: EA 103 2014-07-05 Pt; EA 103 2014-07-05					0.10 0.30	BH1M_0.2-0.3 PID = 3.8 ppm BH1M_0.6-0.7 PID = 3 ppm BH1M_1.1-1.2 PID = 4.2 ppm BH1M_1.6-1.7 PID = 3.2 ppm BH1M_2.1-2.2 PID = 4.5 ppm BH1M_3.0-3.1 PID = 3 ppm BH1M_3.5-3.6 PID = 3.4 ppm BH1M_4.4-4.5 PID = 1.6 ppm BH1M_4.9-5.0 PID = 1.4 ppm BH1M_5.4-5.5 PID = 1.5 ppm	hole Ic			CONCRETE FILL: SANDY CLAY; medium to high plasticity, with subangular to angular gravels, no dotur. SILTY CLAY; medium to high plasticity, grey mottled red, no odour. SHALE: extremely weathered, light brown. Hole Terminated at 5.70 m Refusal on Rock. Borenole Converted into Monitoring Well. e read in conjunction with EI Australia's accompanying sta	-				Gatic Cover Cuttings 50mm uPVC Casing Bentonite Sand 50mm uPVC Screen

٦

ProjectDetailed Site InvestigationLocation26 Elizabeth Street, Liverpool NSWPositionRefer to Figure 2Job No.E23796ClientBinah Development Pty Ltd

Contractor Geosense Drill Rig Drill Rig Inclination -90°

BOREHOLE: BH3

Sheet	1 OF 1					
Date Started	20/4/18					
Date Completed	20/4/18					
Logged SL	Date: 7/5/18					
Checked CS	Date: 7/5/18					

		_					-			Field Material Description						
	_	-	ling		Sampling				Field Material Desc							
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS				
			0.0 —				\boxtimes	-	CONCRETE	-						
			-	0.15	BH3_0.2-0.3 PID = 1.8 ppm			-	FILL: SANDY CLAY; medium to high plasticity, with subangular to angular gravels, no odour.			FILL				
			0.5 — - -	0.50				CI- CH	SILTY CLAY; medium to high plasticity, grey mottled red, no odour.	-		RESIDUAL SOIL				
AD/T	-	GWNE	- 1.0 — -	-	BH3_0.9-1.0 PID = 1.7 ppm					м	-					
			- - 1.5 — -	-	BH3_1.4-1.5 PID = 3.2 ppm											
			- - 2.0 -	2.00	BH3_1.9-2.0 PID = 1.8 ppm				Hole Terminated at 2.00 m Target Depth Reached.							
			- - 2.5 — -	-												
			- 3.0 —	-												
			- - 3.5 —	-												
			- - 4.0 —	-												
			- - 4.5 —													
			- - 5.0—	-	This horebo			ld br	read in conjunction with FI Australia's accompanying star	der						
					This boreho	le lo	ig shou	iid be	read in conjunction with EI Australia's accompanying star	ndaro	d note	25.				

BOREHOLE: BH4

Project	Detailed Site Investigation
Location	26 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E23796
Client	Binah Development Pty Ltd

Contractor El Australia Drill Rig Inclination -90°

Sheet	1 OF 1					
Date Started	20/4/18					
Date Completed	20/4/18					
Logged SL	Date: 7/5/18					
Checked CS	Date: 7/5/18					

								_					_
			lling		Sampling				Field Material Desc				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0				\boxtimes	-	CONCRETE				Т
			-	0.15	BH4_0.2-0.3		\bigotimes	S	FILL: SAND; fine to medium grained, yellow, no odour.			FILL	┢
Ă		GWNE	-	0.30	PID = 0.7 ppm		\bigotimes	-	FILL: SANDY CLAY; medium to high plasticity, with subangular to				
		0	0.5 —				\bigotimes		angular gravels, no odour.	м			
			- 0.5	-	BH4_0.5-0.6 PID = 1.1 ppm		\bigotimes						
				0.70	L	┢	×Χ		Hole Terminated at 0.70 m				+
			-						Refusal on Hard Surface.				
			1.0 —	-									-
			-										
			-										
			-	-									
			1.5 —										-
			-										
			-	-									
			-										
			2.0 —										-
37-05			-	-									
3 2014-0			-										
and in Situ Tod - DGD Lib: EIA 1.03 2014-07-05 Pf; EIA 1.03 2014-07-05			2.5 —										
07-05 Pr				-									
03 2014			-	1									
lb: EIA 1.			-										
DGD L			3.0 —	-									
itu Tool -			-	1									
and In S			-										
atgel Lab			-	-									
0.000 Da			3.5 —]									-
4:42 10.			-										
6/2018 1			-	-									
0//0 ~<			- 4.0 —										
awingFile			4.0										
uQ≫ Γc			-										
S SL.GF			-										
796 LOG			4.5										
E3 E23			-	-									
DREHOL			-]									
EA LIB 1 00 GLB Log IS AU BOREHOLE 3 E23796 LOGS SL.GPJ <-DrawingFile>> 07/05/2018 14:42 10.0.00 DaigeLab			-										
LB Log			5.0 —										L
B 1.03.G					This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying star	ndaro	d note	es.	
EIA U													

Project Detailed Site Investigation Location 26 Elizabeth Street, Liverpool NSW Position Refer to Figure 2 Job No. E23796 Client Binah Development Pty Ltd

Contractor El Australia Drill Rig Inclination -90°

BOREHOLE: BH5

Sheet	1 OF 1
Date Started	20/4/18
Date Completed	20/4/18
Logged SL	Date: 7/5/18
Checked CS	Date: 7/5/18

Drilling Sampling								Field Material Description						
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F				0.0 —				\boxtimes	-	CONCRETE	-			
				_	0.15			X	-	FILL: SANDY CLAY; medium to high plasticity, with subangular to			FILL .	
	∡		Щ	-		BH5_0.3-0.4		\bigotimes		angular gravels and brick fragments, no odour.				
	Η	-	GWNE	0.5 —		PID = 1 ppm		\bigotimes			м	-	-	
				-	0.60	BH5_0.6-0.7		\sum_{x}	CI- CH	SILTY CLAY; medium to high plasticity, grey mottled red, no			RESIDUAL SOIL	
					0.80	PID = 1.5 ppm		× 	Сн	odour.				
				-						Hole Terminated at 0.80 m Target Depth Reached.			-	
				1.0 —									-	
				-									-	
				-									-	
				1.5 —									-	
				-									-	
				-									-	
				2.0 —									-	
				-									-	
014-07-05				-									-	
IA 1.03 2				-									-	
-05 Prj: E				2.5 —									-	
3 2014-07				-									-	
b: EIA 1.0				-									-	
DGD Li				3.0 —									-	
Situ Tool -				-									-	
ab and In				-									-	
Datgel La				- 3.5 —									-	
10.0.000				- 0.0									-	
14:42				-									-	
07/05/20				-									-	
ingFile>>				4.0 —									-	
<cdraw< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></cdraw<>				_									-	
S SL.GP.				-									-	
3796 LOG				- 4.5 —									-	
LE 3 E25				-									-	
BOREHO				-									-	
IS AU				-									-	
EA LIB 103 CLB Log IS AU BOREHOLE 3 E2796 LOGS SL GPJ <-ODawingFile> 07/05/2018 1442 10:0.000 Dalgel Lab and In Sin Toa - DGD LB: EIA 103 2014-07-05 PF; EIA 1		I		5.0 —		This borehol	le lo	g shou	ld be	e read in conjunction with El Australia's accompanying star	hdaro	d note	25.	
EIA LIB 1.														

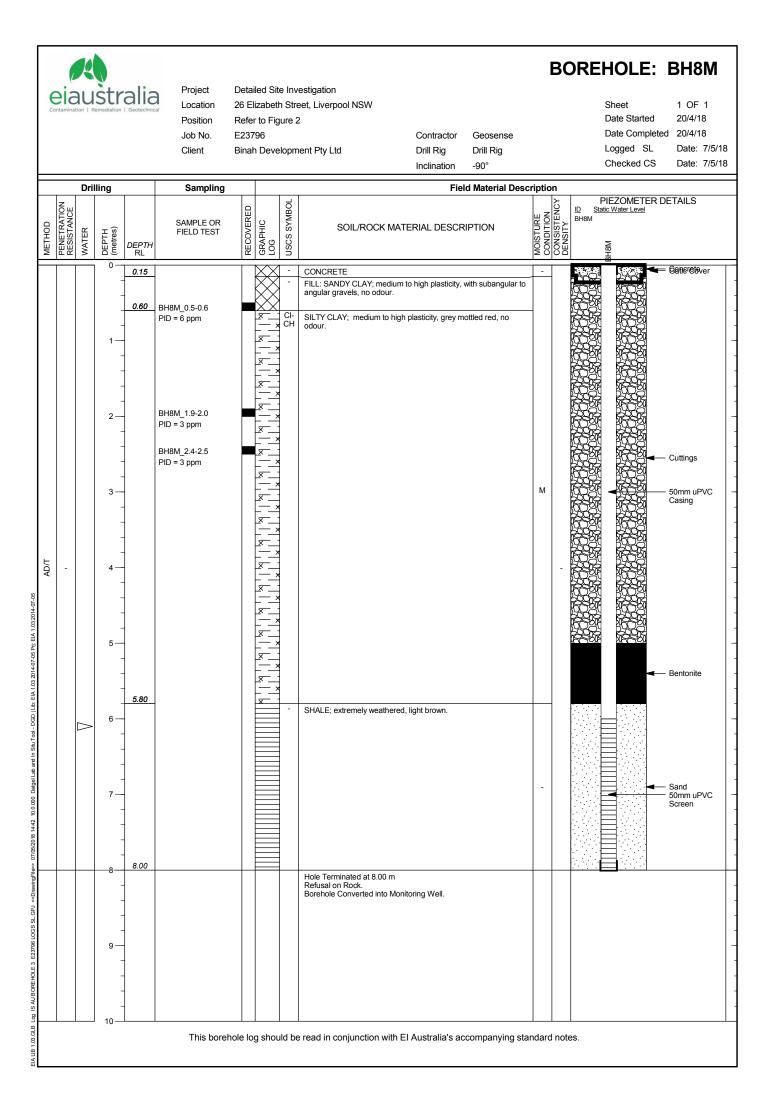
BOREHOLE: BH6

Project	Detailed Site Investigation
Location	26 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E23796
Client	Binah Development Pty Ltd

Contractor El Australia Drill Rig Inclination -90°

Sheet	1 OF 1
Date Started	20/4/18
Date Completed	20/4/18
Logged SL	Date: 7/5/18
Checked CS	Date: 7/5/18

Drilling Sampling									Field Material Description						
METHOD	PENETRATION RESISTANCE	WATER		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS			
			0.0	0.15		k	\bigotimes	-	CONCRETE	-					
HA		GWNE	-	0.15	BH6_0.3-0.4 PID = 4 ppm		\bigotimes	-	FILL: SANDY CLAY; medium to high plasticity, with subangular to angular gravels, no odour.		-	FILL			
		G	0.5	0.50	BH6_0.6-0.7 PID = 12 ppm			CI- CH	SILTY CLAY; medium to high plasticity, grey mottled red, no odour.	м		RESIDUAL SOIL			
				0.80		-	<u> </u>		Hole Terminated at 0.80 m Target Depth Reached.						
			1.0 —									-			
			-												
			-												
			1.5 —									-			
			-												
			-												
			2.0 —									-			
-0705			-												
1.03 2014-			-												
05 Prj: EIA			2.5									-			
13 2014-07-			_												
Lib: EIA 1.0			-												
od - DGD			3.0									-			
d In Situ To			-												
tgel Lab an			-												
0.0.000 La			3.5 —									-			
18 14:42 1			-												
> 07/05/20			-												
awingFile>:			4.0									-			
.GPJ < <di< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></di<>			-												
I LOGS SL			-												
E 3 E23796			4.5 —												
SOREHOLE			-												
00 IS AU E			-												
EA LIB 1.03 GLB Log IS AU BOREHOLE 3 223796 LOGS SL.GPJ < <dawingflex> 07/65/2018 1442 10.000 DageLab and In Stu Tod - DGD Lb: EIA 1.03 2014/0705 Pr; EIA 1.03 2014-07-05</dawingflex>		. <u> </u>	5.0 —		This borehole	e log	g shou	ld be	e read in conjunction with El Australia's accompanying star	ndarc	l note				


BOREHOLE: BH7

Project	Detailed Site Investigation
Location	26 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E23796
Client	Binah Development Pty Ltd

Contractor El Australia Drill Rig Inclination -90°

Sheet	1 OF 1
Date Started	20/4/18
Date Completed	20/4/18
Logged SL	Date: 7/5/18
Checked CS	Date: 7/5/18

Drilling Sampling										Field Material Description					
	_		Drii	ling		Sampling			1						
METHOD	PENETRATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
F				0.0 —				XX	-	CONCRETE					
	<u> </u>	-	GWNE	-	0.15			\times			-	_	-		
	-		9	-	0.30	BH7_0.2-0.3		\sim	-	BRICK FRAGMENTS	м		·		
					0.30	PID = 0.8 ppm		$\Delta \Delta$		Hole Terminated at 0.30 m					
				-						Refusal on Hard Surface.			-		
				0.5 —									-		
				-									-		
				-											
				1.0 —									_		
				-											
				_											
				-											
				-											
				1.5 —									-		
				-											
				-									-		
				-									· · ·		
				-									-		
				2.0 —									-		
<u>م</u>				-									-		
and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05				-									-		
03 201															
EIA 1.				2.5 —											
-05 Prj				2.5											
014-07				_											
1.03 2				-											
LID: EI/				-									-		
DGD				3.0 —									-		
- Tool -				-									· · · · ·		
In Situ				-									· · ·		
ab ano				-											
Datgel L				-									·		
0000				3.5 —									-		
42 10.4				-											
EIA LIB 1.03.GLB Log IS AU BOREHOLE 3 E23796 LOGS SL.GPJ < <drawingfile>> 07/06/2018 14:42 10.0.000 Datgel Lab</drawingfile>				_											
17/05/2(_											
ile>> (4.0 —									-		
awingF				-											
^S				-											
SL.GP,				-											
LOGS				-									.		
23796				4.5 —									-		
LE 3 E				-											
REHO				-									· · · · · · · · · · · · · · · · · · ·		
AU BC				-											
Log IS				- 5.0 —											
3.GLB				0.0		This horehole		n shou	ld he	e read in conjunction with El Australia's accompanying stan	Idaro	Inote	25		
JB 1.00							, 10(3 31100			aart	note			
EIAL															

Project Detailed Site Investigation Location 26 Elizabeth Street, Liverpool NSW Position Refer to Figure 2 Job No. E23796 Client Binah Development Pty Ltd

Contractor Geosense Drill Rig Drill Rig Inclination -90°

BOREHOLE: BH9

Sheet	1 OF 1
Date Started	20/4/18
Date Completed	20/4/18
Logged SL	Date: 7/5/18
Checked CS	Date: 7/5/18

Drilling Sampling							Field Material Description							
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
			0.0 —				$\times \times$	-	ASPHALT			FILL		
			-	0.15			\bigotimes			-		-		
			-	-	BH9_0.2-0.3		\bigotimes	-	FILL: SANDY CLAY; medium to high plasticity, with subangular to angular gravels, no odour.			-		
			-		PID = 1.2 ppm		$\times\!\!\!\times$							
			0.5	0.50			$\times\!$							
			- 0.5	-			× ×	CI- CH	SILTY CLAY; medium to high plasticity, grey mottled red, no odour.			RESIDUAL SOIL		
F		Щ	-	-			×							
AD/T	-	GWNE	-	-						м	-			
			-	-	BH9_0.9-1.0		X							
			1.0 —	-	PID = 0.8 ppm		× ×					-		
			-				×							
			-				 							
			-	-										
			—1.5—	1.50	BH9_1.4-1.5 PID = 0.4 ppm									
			-	-					Hole Terminated at 1.50 m Target Depth Reached.					
			-	-								-		
			-											
			2.0 —											
			2.0	-										
7-05			-	-										
2014-0			-	-										
IA 1.03			-	-										
6 Prj: E			2.5 —									-		
14-07-0			-											
1.03 20			-											
ID: EIA			-	-										
1 dbc			3.0 —	-								-		
Tool - I			-											
d In Situ			-											
Lab and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05			-											
Datgei			3.5 —											
0.0.000														
14:42 1			-	-								.		
5/2018			-	-								.		
> 07/0			-									.		
ingFile>			4.0 —									-		
< <draw< td=""><td></td><td></td><td>-</td><td>]</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></draw<>			-]										
· GPJ ·			-											
JGS SI			-	-										
3796 LL			4.5 —	-								-		
E3 E2			-	-								.		
REHOL			-	-								.		
AUBO			-											
Log IS			- 5.0 —											
03.GLB					This borehole	e loo	g shou	ld be	e read in conjunction with EI Australia's accompanying star	ndaro	d note	es.		
EA LIB 103 GLB Log IS AU BOREHOLE 3 E23796 LOGS SL GPJ <<0 mmgFHø> 07/05/2018 14.42 10.0.000 Dalge														
â														

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

Contamination Remediation Geob	chnical										
DRILLING/EXC	AVATION METHOD										
	and Auger	RD	Rotary blade o	or drag bit	NQ	Diamond Core - 47 mm					
	atube Coring	RT	Rotary Tricone	e bit	NMLC	Diamond Core - 52 mm					
	on-destructive digging	RAB	Rotary Air Blas		HQ HMLC	Diamond Core - 63 mm					
	Iger Screwing	RC	Reverse Circu	lation	-	Diamond Core - 63mm					
	ıger Drilling	PT	Push Tube		BH	Tractor Mounted Backhoe					
	Bit	СТ	Cable Tool Rig	9	EX	Tracked Hydraulic Excavator					
	C-Bit, e.g. ADT	JET	Jetting		EE	Existing Excavation					
	bllow Auger	WB	Washbore or E	Bailer	HAND	Excavated by Hand Methods					
PENETRATION/EXCAVATION RESISTANCE											
L Low res	sistance. Rapid penetratio	n/ excavati	on possible with	little effort from	n equipment i	used.					
			•		• •	ate effort from equipment used.					
-						ificant effort from equipment used.					
R Refusal	/ Practical Refusal. No f	urther prog	gress possible wit	hout risk of da	mage or una	cceptable wear to equipment used.					
	ts are subjective and are de ng tools and experience of t			cluding equip	ment power a	and weight, condition of					
WATER											
	Water level at da	te shown		\triangleleft	Partial wate	er loss					
	Water inflow				Complete	water loss					
GROUNDWATE NOT OBSERVE				ent or not, was	s not possible	e due to drilling water, surface seepage					
GROUNDWATER Borehole/ test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period.											
SAMPLING ANI		y nave be				non open for a longer period.					
seating 30/80mm RW HW HB	Penetration occ	urred unde urred unde	curs, the blows a er the rod weight er the hammer an on anvil	only							
Sampling											
DS	Disturbed Samp										
BDS GS	Bulk disturbed S Gas Sample	sample									
WS	Water Sample										
U63	•	e sample -	number indicates	s nominal sam	ple diameter	in millimetres					
Testing											
FP	Field Permeabil	itv test ove	r section noted								
FVS				ected shear st	renath (sv = r	peak value, sr = residual value)					
PID	Photoionisation	•			- J - (1	····,···,					
PM	Pressuremeter		0 11								
PP	Pocket Penetro	meter test	expressed as ins	trument readin	ng in kPa						
WPT	Water Pressure	tests									
DCP	Dynamic Cone										
CPT	Static Cone Per										
CPTu	Static Cone Per	netration te	st with pore pres	sure (u) measi	urement						
					•	soil contamination assessment					
R = 0	No visible evidence of cor			R = A		ural odours identified					
R = 1	Slight evidence of visible	contaminat	ION	R = B	0	natural odours identified					
R = 2	Visible contamination			R=C		on-natural odours identified					
R = 3	Significant visible contami	nation		R = D	Strong non-	natural odours identified					
	ECOVERY ore Recovery (%)	90P	= Solid Core Re		E	ROD = Rock Quality Designation (%)					
	ore Recovery (%)			o recovered		RQD = Rock Quality Designation (%)					
$= \frac{\text{Length of core r}}{\text{Lengh of cor}}$	ecevered re run x 100	$=\frac{2 \text{ Length}}{2}$	n ofcylindrical con Lengh of core ru	X	100 =	$\frac{\Sigma Axial \ Lenghts \ of \ core > 100 mm}{Lengh \ of \ core \ run} \ x \ 100$					
MATERIAL BOU											
= inferr	ed boundary		 = probable b 	oundary	_	? ? ? ? = possible boundary					

eiaust Contamination Remediation	ralia			USED C			SOIL DESCR AND TEST PI					
	FILL		.000.	RGANIC SC DL, OH or Pt		 	CLAY (CL, C	CI or CH)				
		BLES or _DERS	**** **** ****	ILT (ML or N	1H)		SAND (SP c	or SW)				
	GRAV GW)	/EL (GP or	Combination sandy clay	s of these basic s	symbols may b	e used to i	ndicate mixed mater	ials such as				
Soil is broad	CLASSIFICATION AND INFERRED STRATIGRAPHY Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/tactile methods.											
PARTICLE	SIZE CH	ARACTERIST	cs	USCS SY	MBOLS							
Major Divi		Sub Division	Particle Size	Major D	Divisions	Symbol	Descrip					
	BOULDE	ERS	>200 mm	ي ع	o of are	GW	Well graded grav sand mixtures, lit					
	COBBL	ES	63 to 200 mm	LS iles	50% ins a	GP	Poorly graded gra	vel and gravel-				
		Coarse	20 to 63 mm	0.0 ר	than 5(se grain >2.mm	-	sand mixtures, lit Silty gravel, gra					
GRAVE	EL	Medium	6 to 20 mm	than that	More than 50% of coarse grains are >2.mm	GM	mixtur	es.				
		Fine	2 to 6 mm	by c ater	Mo	GC	Clayey gravel, gra mixtur					
SAND		Coarse Medium	0.6 to 2 mm 0.2 to 0.6 mm	3 7 1 COARSE GRAINED SOILS More than 50% by dry mass less than 63mm is greater than 0.075mm	More than 50% of coarse grains are <2 mm	SW	Well graded sand sand, little or	no fines.				
0, 112		Fine	0.075 to 0.2mm	m than	se gi 2 m	SP	Poorly graded sar sand, little or					
	SILT	-	0.002 to 0.075 m		re th oars	SM	Silty sand, sand	-silt mixtures.				
	CLA		<0.002 mm	tha T	of c	SC	Clayey sand, mixtur					
	PLAS			.s nass than		ML	Inorganic silts of very fine sands, i	low plasticity, ock flour, silty				
), parcent		c	H	FINE GRAINED SOILS More than 50% by dry mass less than 63mm is less than 0.075mm	Liquid Limit less	CL	or clayey fir Inorganic clays of plasticity, gravell clays, silty	low to medium y clays, sandy				
INDEX { I_0 }.	20	CL CI .N		FINE GRAINED More than 50% by ess than 63mm is 0.075mm	Liqu	OL	Organic silts and clays of low	d organic silty				
QNI			он	LE G than	פ^ ריי	MH	Inorganic silts of Inorganic clays of	high plasticity.				
STICITY	10 CL-M	OL or ML	MH	FII More less	Liquid Limit > than 50%	CH OH	Organic clays of r plastic	nedium to high				
PLAST	20		60 70			PT	Peat muck and	other highly				
		LIQUID LIMIT (WL),	percent				organic	soils.				
MOISTUR	1											
Symbol D	Term Dry	Description Sands and grave	els are free flowing.	Clays & Silts ma	v be brittle or	friable and	powderv.					
M	Moist		than in the dry cond									
W	Wet		water. Sands and g									
		ohesive soils may than, « much less		n relation to plast	ic limit (WP) o	r liquid limi	t (WL) [» much great	er than,				
CONSISTEN		·	-	DENSITY								
Symbol	Term		Shear Strength	Symbol	Term		Density Index %	SPT "N" #				
VS S	Very So Soft		12 kPa 25 kPa	VL I	Very Loo Loose	se	< 15 15 to 35	0 to 4 4 to 10				
F	Firm	25 to	50 kPa	MD	Medium De	nsity	35 to 65	10 to 30				
St VSt	Stiff		100 kPa	D VD	Dense Vory Don		65 to 85	30 to 50				
VSt H	Very Sti Hard		200 kPa 200 kPa		Very Den	30	Above 85	Above 50				
In the absen # SPT correl	ce of test r	esults, consistenc	y and density may b	be assessed from by be subject to co	correlations vorrections for o	vith the obs	served behaviour of t pressure and equipr	he material. ment type.				
MINOR CO	MPONE	NTS										
Term		nent Guide e just detectable b	y feel or eye but soi	l properties little			pportion by Mass e grained soils: $\leq 5\%$,				
Trace	or no diff	erent to general p	roperties of primary	component	e		grained soil: ≤15% grained soils: 5 - 12	%				
Some	Presence easily detectable by feel or eye but soil properties little or no different to general properties of primary componentCoarse grained soils: 5 - 12% Fine grained soil: 15 - 30%											

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

Symbol	Term	Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide
EL	Extremely Low	< 0.03	Easily remoulded by hand to a material with soil properties.
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.
#			Deinst Lead Other with Index Jan Avial test (MDa)

[#]Rock Strength Test Results

◀

Point Load Strength Index, $Is_{\rm (50)},$ Axial test (MPa)

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result ($Is_{(50)}$) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x $Is_{(50)}$, but can be as low as 5 MPa.

ROCK	MATER								
Sym	bol	Term	Field Guide						
RS		Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.						
EW	1	Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.						
DW	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or						
	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.						
SW	1	Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.						
FR		Fresh	Rock shows no sign of decomposition or staining.						

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

Layering					Struc	ture							
		Descr	intion		Term				Spacing (mm				
Term		Desci	iption			Thinly laminated							
ABBREVIATION Defect Type Joint Bedding Parti Foliation Contact Cleavage Sheared Sear Zone (Fault) Crushed Sear Zone (Fault) Decomposed Seam/ Zone Infilled Sear Schistocity Vein ABBREVIATION Shape Planar Curved Undulating Stepped		No lay	ering apparent		Lami	·	naleu		<6 6 – 20				
		Lovori	na juot vioiblo: litt	lo offoot on			bedded		20 - 60				
Poorly Devel	oped	proper	ng just visible; litt ties	le effect off	-	y bed			60 - 200				
		· ·	ng (bedding, folia	tion closurado)		um be			200 - 600				
Bedding Parting Foliation Contact Cleavage Sheared Seam/ Zone (Fault) Crushed Seam/ Zone (Fault) Decomposed Seam/ Zone Infilled Seam	bed		t; rock breaks mo			kly bedded 600 – 2							
			el to layering			thickly bedded > 2,00							
ABBREVIAT	IONS A		CRIPTIONS FO	R DEFECT TYP			, 						
Defect Type		Abbr.	Description										
		JT	Surface of a fra or no tensile str acts as cement	ength. May be c	, formed without displacement, across which the rock has little closed or filled by air, water or soil or rock substance, which								
Bedding Par	ting	BP	sub-parallel to la indicating orient	ayering/ bedding ation during dep	j. Beddi osition,	ng ref resuli	ers to the la ting in plana	yering c r anisot	no tensile strength, parallel r stratification of a rock, ropy in the rock material.				
Foliation		FL					ear direction or perpendicular to the direction of rock, e.g. Schistosity (SH) and Gneissosity.						
Contact		CO	Cleavage planes appear as parallel, closely spaced and planar surfaces resulting										
Cleavage		CL			uring of rock through deformation or metamorphism, independent of bedding.								
		SS/SZ	Seam or zone with roughly parallel almost planar boundaries of rock substance cut by closs spaced (often <50 mm) parallel and usually smooth or slickensided joints or cleavage plan Seam or zone composed of disoriented usually angular fragments of the host rock substar										
Crushed Seam/		CS/CZ			s of the host rock substanc ments may be of clay, silt,								
		DS/DZ	Seam of soil su material in place		ith grad	ationa	al boundarie	s, forme	ed by weathering of the rock				
Infilled Seam	ı	IS	formed by soil r	nigrating into joir	nt or ope	en cav	/ity.		roughly parallel boundaries				
Schistocity		SH	of platy or prism	natic mineral gra	ins, suc	h as r	nica.		e to the parallel arrangemen				
Vein		VN	Distinct sheet-like body of minerals crystallised within rock through typically open-s or crack-seal growth.										
ABBREVIAT	IONS A	ND DES	CRIPTIONS FO	R DEFECT SHA	PE ANI	D ROI	JGHNESS						
Shape	Abbr.	Descri	ption	Roughness	Abbr.	Desc	cription						
Planar	PI	Consis	stent orientation	Polished	Pol	Shin	y smooth su	rface					
Curved	Cu	Gradu orienta	al change in ation	Slickensided	SL	Groo	oved or striat	ed surfa	ace, usually polished				
Undulating	Un	Wavy	surface	Smooth	S		Smooth to touch. Few or no surface irregularitie						
2							Many small surface irregularities (amplitude genera <1mm). Feels like fine to coarse sandpaper						
Stepped	St	define	r more well d steps	Rough	RF	-1mi	m). Feels lik	e fine to	ularities (amplitude general coarse sandpaper				
Stepped Irregular	St Ir	define Many in orie	r more well d steps sharp changes ntation	Very Rough	VR	<1m Many >1m	m). Feels lik y large surfa m. Feels like	e fine to ce irreg very co	ularities (amplitude general				
Stepped Irregular		define Many in orie	r more well d steps sharp changes	Very Rough The dip (inclination	VR on from	<1mi Many >1mi horizo	m). Feels lik y large surfa m. Feels like ontal) of the c	e fine to ce irreg very co lefect.	ularities (amplitude general coarse sandpaper ularities, amplitude general parse sandpaper				
Stepped Irregular Orientation:	lr	define Many in orie Vertic Inclin	r more well d steps sharp changes ntation cal Boreholes –	Very Rough The dip (inclination The inclination is	VR on from s measu	<1mi Many >1mi horizo	m). Feels lik y large surfa m. Feels like ontal) of the c	e fine to ce irreg very co lefect. ingle to	ularities (amplitude general o coarse sandpaper ularities, amplitude general parse sandpaper the core axis.				
Stepped Irregular Orientation:	lr	define Many in orie Vertio Inclir	r more well d steps sharp changes ntation cal Boreholes – ned Boreholes – CRIPTIONS FOR	Very Rough The dip (inclination The inclination is	VR on from s measu	<1mi Many >1mi horizo	m). Feels lik y large surfa m. Feels like ontal) of the o s the acute a	e fine to ce irreg very co lefect. ingle to	ularities (amplitude general o coarse sandpaper ularities, amplitude general parse sandpaper the core axis.				
Stepped Irregular Orientation: ABBREVIATI	Ir ONS A Abbr.	define Many in orie Vertic Inclir ND DES Descrip	r more well d steps sharp changes ntation cal Boreholes – ned Boreholes – CRIPTIONS FOR	Very Rough The dip (inclination The inclination is R DEFECT COA	VR on from s measu	<1mi Many >1mi horizo	m). Feels lik y large surfa m. Feels like ontal) of the c s the acute a DEFECT A	e fine to ce irreg very co defect. ngle to PERTU	ularities (amplitude general coarse sandpaper ularities, amplitude general parse sandpaper the core axis. RE				
Stepped Irregular Orientation: ABBREVIATI	Ir ONS A Abbr. CN	define Many in orie Vertie Inclin ND DES Descrip No visib	r more well d steps sharp changes ntation cal Boreholes – ned Boreholes – CRIPTIONS FOR	Very Rough The dip (inclination The inclination is R DEFECT COA ing faces are discol	VR on from s measu TING	<1mi Many >1mi horizc ired as	m). Feels lik y large surfa m. Feels like ontal) of the c s the acute a DEFECT AF Aperture	e fine to ce irreg very co defect. ngle to PERTUI Abbr.	ularities (amplitude general coarse sandpaper ularities, amplitude general parse sandpaper the core axis. RE Description				

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1

APPENDIX G Field Data Sheets

Daily Inspection / Work Summary Card -Remediation & Validation Form OP 005a (Rev 2)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

Project Number:	EZ3796	Engineer Name:	N.C.	Page:	of
Date:	2-5-18	Time ON Site:	14:00		
Travel Time:	1.5 hr	Time OFF Site:	15:20		
Site Address/Locati	on: 26	19			
Climatic Conditions	Vigo	fine			
Completed Works:					
3	Cu	ells	Sempled		
Comments / Issues	/ Conclusions / Furt	her Testing Required / Acti	ons to be Undertaken / Tim	ing of Actions:	
Cu	1001	+ CWQTI	taken	from	BHZM
				-	
					5
3					

Signed by:

Contamination	gations Australia Remediation Geotechnical
Site Address: 26 Elizabeth St Liverpool Job Number: E23796	
Client: Date: 2-5-18	
Field Staff: N.G Sampling Location ID BHIM	
Well Location: Round No:	
MEDIUM DiGroundwater DSurface Water DStormwater DOther:	
SAMPLING POINT INFO	
	bove ground - below ground)
	jove ground - below ground)
nitial Well Depth (mbgl): Screen Interval (mBTOC):	
Previous Sampling Date: Previous SWL (mBTOC):	
PID READINGS	
PID Headspace (ppm): PID Background (ppm):	
PID Breathing Space (ppm):	
PRE PURGE	
Total Well Head Condition: 400 M	
SWL (mbtoc): 3-25 Water Column (m):	
PHASE SEPARATED HYDROCARBONS (PSH)	
Depth to PSH (mbtoc): PSH Visually Confirmed (Bailer):	
PSH Thickness (mm):	
PURGE AND SAMPLE	
Sampling Method	
5 / / · · · · · · · · · · · · · · · · ·	
Weather Conditions: Fine Cycle: Cycle: Cycle:	
Pump on time: Pump off time:	
WATER QUALITY PARAMETERS	
Probe Make and Model: Bump Test Date and Time:	
TimeVolumeSWLTempECRedoxDOpH(L)(mbtoc)(°C)(μ S/cm)(mV)(mg/L)(units)Comments (colour, turbi	dity, odour etc.)
0.5 3.75 2478 13270 176.7 0.71 7.28 brown yellow, M-H	turb, no odo
1 3.25 24.80 13231 130.5 0.70 7,21	/
1-5 3.25 24.85 13248 133.4 0.69 7.12	
2 325 24.88 13250 137.6 0.69 7.08	
Stabilisation range:	
3 consecutive readings ±0.2°C ±3% ±20mV ±10% ±0.2	
OTHER COMMENTS/OBSERVATIONS:	
SIGNATURE:	
	1

								Contamination Remediation Geotechnical
Site Addre	ess: 26	E1.7	abeth	St l	woos	1	Job Numb	per: 1=237-96
Client:				/	1	1	Date: 2	-5-18
Field Staf	f: N.G						Sampling	Location ID BHZM
Well Loca							Round No	
MEDIUM		D4	Groundwat	er 🗆 S	urface Wa	ater	□Stormw	ater DOther:
SAMPLIN	IG POINT	INFO						9
	allation Dat						Stickup (n	n): - 0 · 10 (+ above ground - below ground)
	II Depth (m							terval (mBTOC):
	Sampling							SWL (mBTOC):
PID REAL		Jato.						
	Ispace (pp	m).		/			PID Back	ground (ppm):
	thing Space						TID DOON	ground (ppm).
PRE PUF	and the second se	e (ppin).	/					
and the second	II Depth (m	hal). O	1.87				Well Hear	d Condition: d Operal
			07				Water Co	9000
			OCARBON	IS (DSH)			Water ou	
			OCARDOI	10 (1 011)				ally Confirmed (Bailer):
	PSH (mbto		/				F SI I VISU	laily commed (baller).
	kness (mn		/					
		LE					0 1 "	
	g Method	d to	□Bladde	r l	∃Peristalti	с Ц	Submersit	
	Pump Inle		nby		Fill Timer			
	essure Reg		i): 20					e Timer: 5
	Conditions	: f,he	,				Cycle: (
Pump on							Pump off	time: '
	QUALITY		TERS					
Probe Ma	ake and Mo	odel:					Bump Te	st Date and Time:
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour etc.)
	0.5	2.99	24:27	11720	154.8	0.28	7.50	pale rellance & -turb, no oclow
	1	2.99	24.25	11265	141.9	0.26	7.65	
	1.5	2.99	24.23	11316	126.3	0.24	7.79	
	2	2.99	24.20	11340	105.2	0.21	7.88	
				. 10				9
1011210105302200	bilisation ra		±0.2°C	±3%	±20mV	±10%	±0.2	
			RVATION	S:	I	L	1	
			+ C		1	take	7	
SIGNAT		11	0					
		J/4						

4

		WATER	SAMPLI	NG FIELD) SHEET			Australia Contamination Remediation Geotechnica
Site Addr	ess: 26	ElTo	beth .	st hig	10021		Job Numb	per: E23796
Client:				/	4			-5-18
Field Stat	ff: N.G							Location ID BH84
Well Loca							Round No	
MEDIUM			Groundwa	tor DS	Surface Wa	ator	□Stormw	
			Giounawa		unace wa	ater		
							Oti-luur (a	
	allation Da	1792.02					-	n): - O · IO (+ above ground - below ground)
	ell Depth (n							terval (mBTOC):
	Sampling	Date:					Previous	SWL (mBTOC):
PID REA	DINGS							
PID Head	dspace (pp	m):		/			PID Back	ground (ppm):
PID Brea	thing Space	e (ppm):	/					
PRE PUP	RGE							
Total We	ll Depth (n	nbal): 7	.93				Well Head	d Condition: 402 of
	otoc): 3		.0				Water Co	lumn (m):
	SEPARAT		OCARBO	NS (PSH)				
			OCARDO	10 (1 011)				ally Confirmed (Bailer):
	PSH (mbt			/			FSH VISU	lany commed (baner).
	ckness (mr		/					
	AND SAM	PLE						
	g Method		□Bladde	er [⊐Peristalti	с 🗆	Submersit	Andrew Contraction of the State Stat
Depth of	Pump Inle	t: <i>6.0</i>	0 mby1				Fill Timer	: 10
Pump Pre	essure Re	gulator (ps	i): 20				Discharge	e Timer: 5
Weather	Conditions	: fine					Cycle:	CRM 4
Pump on	time:						Pump off	
	QUALITY	PARAME	TERS					
	ake and Me						Bump Tes	st Date and Time:
	Volume	SWL	Temp	EC	Redox	DO	pH	
Time	(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	Comments (colour, turbidity, odour etc.)
	0.5	3.23	25.33	13090	72.8	0.44	794	Grounly/ey L-M + 16, no octan
)	32)	25.37		75.7	0.44	7.9)	1
	1.5	3.2]	25.42	13131	86.9	0.43	7.87	
	2.0	3.2)	25.57	13140	90.9	0.63	7.82	
					/			
Ctob	ilieation re	nde,						
Action of the second	oilisation ra		±0.2°C	±3%	±20mV	±10%	±0.2	
Land Street Street Street	secutive re							
OTHER	COMMEN	rs/obsei	RVATIONS	5:				
SIGNATI	JRE:	2/1						
	l	1 h						

Site Inspection Card - CLM Projects Form OP 005 (Rev 2)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

Project Number:	F23 796 Engineer Name: Shazza	
Date:	20-4-18 Time ON Site: 0700	
Travel Time:	Time OFF Site: 6 PM	
Site Address/Location:	26 Elizabeth St.	(iverpoo)
Climatic Conditions:		circipsof.
Current Site Uses:		
Se	ervice Centre.	
Surrounding Land Uses:		
North: All S	Baints' Catholic C	hurch
South: NSW	Police & Liverpool	Court House
East:	bigge St & Bigge	2 Pork.
West: Ge	orge St & Car	Parking.
Current Site Condition		
Buildings Structures:		Seller
potential ACM pote Other (please decsribe): Soil / Vegetation (overgrown, dis Small part	ential lead paint of accessible soils (locations) stressed, bare soil patches): exposed bare soils with	front . vegetation
Condition of concrete, bitumen		
Conclete crac		
Evidence of USTs / UPSS Infrast Potential UST	tructure: Sump at the reav	ot wavehouse / workshop.
Evidence of Groundwater Monito	oring Wells:	
Presence of Waste / Rubbish / S Yes Stock	tockpiles: piles of Asbestos.	inside burding
Unusual Odours:		
Signed:	Name:	Date:

Site Inspection Card - CLM Projects Form OP-005 (Rev 2)

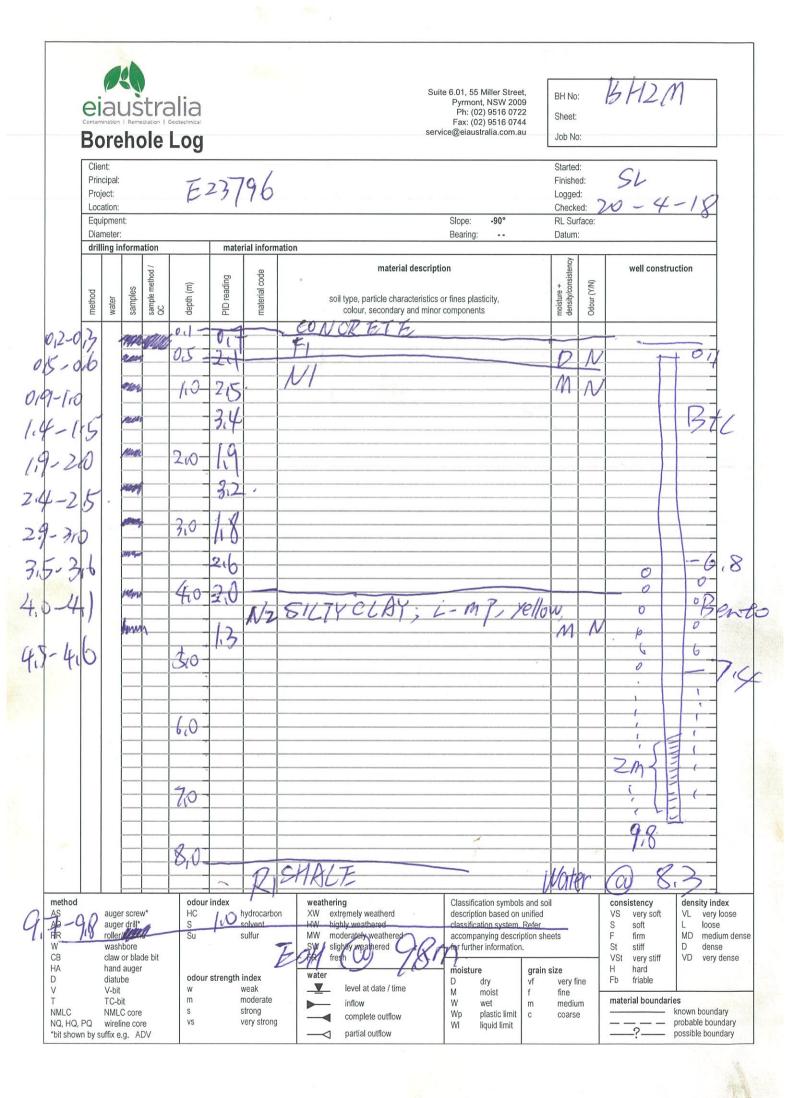
El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

<u>Site Topography</u> (slope of site, surface water, drainage, closest receptor etc.)	
very slight slope towads east.	
Hazardous materials / activities: (presence of asbestos, solid or liquid hazardous materials, infrastructure)	
A service centre, potential. UST / Oil sepectors Stockpiles of unwanted soil/ gas tanks in workhouse.	
gas tanks in wood house	
Anecdotal Information:	
Notes:	
· · · · · · · · · · · · · · · · · · ·	
Signed: Name: Date:	

Site Inspection & Operational History Interview - Form OP-005 (Rev 002)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009


ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

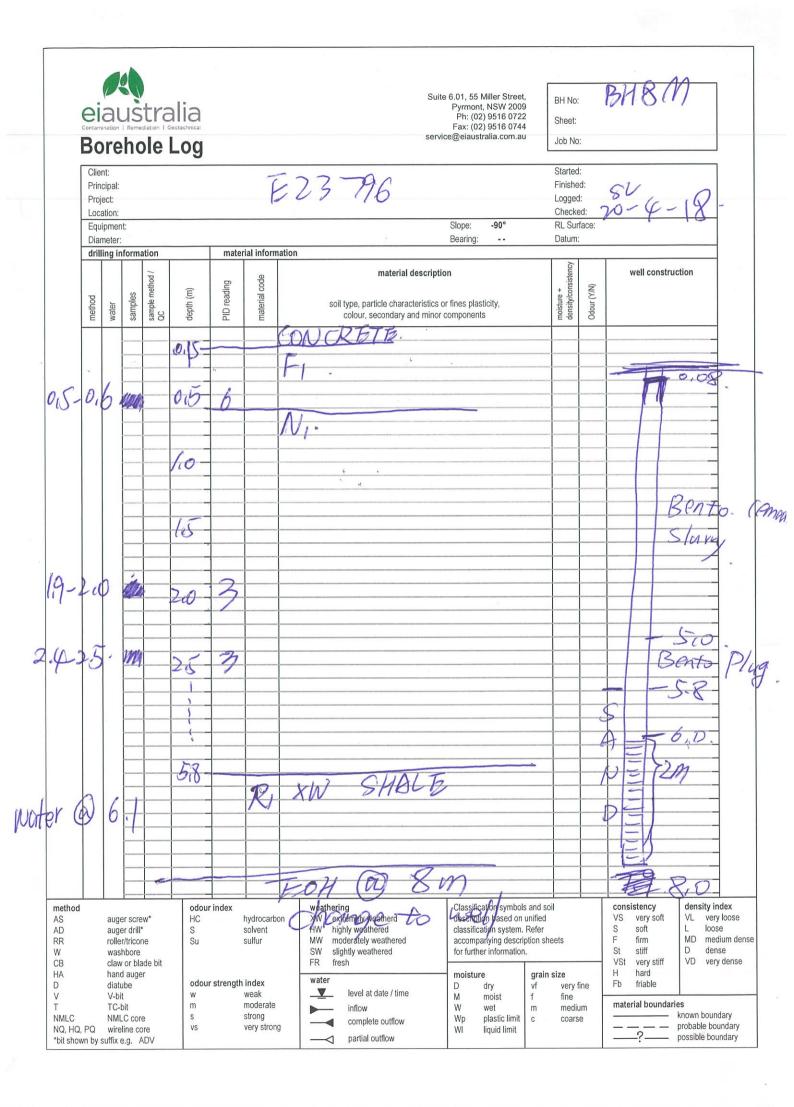
Site Plan (Schematic or Scale):

Signed:

	B	manacio	u i kem	rediation	alia Geotechnical Log						2		6.01, 55 Miller Pyrmont, NSW Ph: (02) 9516 Fax: (02) 9516 e@eiaustralia.c	/ 2009 5 0722 5 0744	BH N Shee Job I	I.	n Mg		M- {	-1
	Pri Pro Loc Equ	ncipal ject: ation upme meter	: nt:										Slope: -90°		Starte Finisl Logge Chec RL Si	ned: ed:				
		_	nform	ation	1	mate	erial inform	nation					Bearing:		Datur	n:				_
	method	water	samples	sample method / QC	depth (m)	PID reading	material code	p	C	vpe, particle olour, secor	aterial des character ndary and	ristics or	ines plasticity		moisture + density/consistency	Odour (YN)	well construction			
-	0.2		V/m			3,8	F,	PALI	Agra	andy C	LAY	; M.	Mplas	, with	M	N		n	0,1	200
-	0.1	L	INDA		0.5-	30	Nı	5;14	Jel al	Ay ned	M-	Mr	olas, g.	rey	M	V			R	
1.	2		(JAI)		10	4.2			2		dina)								6	T C
[.	7				1.5	3.2								inter a					-3,4	
					2.0-	45						1					00000		0 0 4,0	7
5.	-2.	6			25.	e E			10 		V	/					· · ·		-4	
3	31				3,0	20					an.		4 5				· ·		r (-
3	3.6				3.5-	34		-18	in and a second								(-7	-
4	4.0				40	ų,		<u>,</u>	10000 1000 1000 1000 1000 1000										t	
	au ro wa cla	iger d ller/tri ashbo aw or	cone re blade t	pit	odour in HC S Su	hyd	Irocarbon vent fur	weat XW HW MW SW FR	highly we	ely weathere	ed	des clas acc	ssification symbo cription based or ssification system ompanying desci further informatio	i unified . Refer iption shee		V S F	soft firm t stiff	soft	L loc MD me D de	ry loose se dium dens 1se
Q	dia V- TC NM	nd au atube bit C-bit MLC c reline a e.g.	ore		odour st w m s vs	stro	ak derate	water	r level - inflov Comj	l at date / tin w plete outflow al outflow		mo D M W Wp WI	dry dry moist wet plastic limit liquid limit	grain si vf f m c	ze very fine fine medium coarse	H F	hard	oundarie		undary

	eiaustralia Contantration 1 Gestachicat Borehole Log						Suite 6.01, 55 Miller Street, Pyrmont, NSW 2009 Ph: (02) 9516 0722 Fax: (02) 9516 0744 service@eiaustralia.com.au					lo: t: √o:	BHIM-2 7573796		
	Client: Principal: Project: Location: Equipment: Diameter: drilling information					mat	erial inform		Slope: -90° Bearing:			ed: ned: ed: ked: urface: n:	SZ		
	method	water	1	sample method / QC	depth (m)	PID reading	material code	material descript soil type, particle characteristics colour, secondary and minor	or fines plasticity,		moisture + density/consistency	Odour (Y/N)	well cons	struction	
44	K.A	5	, M		4.5-	lı b									
Q.9-	Şo			1	5.0	14	RI	SHALE, XW, brown	, Light	4	D	N			
.4-0	.5				55	//>		HARD ROCK S Refusal	HALE						
								Change to	well		6	-7	M.		
								5. 5.						2	
method					odour			weathering	Classification symbol	s and coil			consistence	downter	
AS AD RR W CB HA D V	au ro wi cla ha	iger so iger dr ller/trio ashbor aw or t ind au atube bit	rill* cone re blade l	bit	HC S Su	h si si	ydrocarbon olvent ulfur odex eak	XW extremely weatherd HW highly weathered MW moderately weathered SW slightly weathered FR fresh water Vertication of the state of time	description based on unified classification system. Refer accompanying description sheet for further information. moisture D dry vf		ze very fine		consistencyVSvery softSsoftFfirmStstiffVStvery stiffHhardFbfriable	density in VL very L loose MD med D dens VD very	
T NMLC NQ, HQ, P(*bit shown	TC NM Q wi	C-bit /ILC co reline	core		m s vs	m st	oderate rong ery strong	inflow complete outflow	M moist W wet Wp plastic limit WI liquid limit	m	fine medium coarse			ies known bound probable bour possible bour	

	Contam	ination	Reme	siation [alia Log			Suite 6.01, 55 Mille Pyrmont, NS Ph: (02) 95 Fax: (02) 95 service@eiaustralia.	W 2009 16 0722 16 0744	BH No Sheet: Job No	1	BHQ	3
	Proj Loca Equ Diar	cipal: ect: ation: ipmer neter:			EZ	· ·	96	Bearing:					- 18
8	method	water ut bui	samples	sample method / oit	depth (m)	BID reading	rial inform material code	material description soil type, particle characteristics or fines plasticity, colour, secondary and minor components		moisture + density/consistency	Odour (Y/N)	well constru	ıction
,2-	0,)	ر ج ر			015-		(18	CONCRETE FI					
7-1	.0		17M	•	110-	1.7						1	
-1	5	,			1.5	3.2	<						
J.					2,0.	18		TEOM @ 2.0 TDR	>.		ja 1		
									1				
thod			r screw	,*	HC		ydrocarbo		sed on unifie	d		consistency VS very soft	density index VL very loose
		roller wash claw	or blad auger be	e bit	S Su odour w m	strength	olvent sulfur ndex weak noderate	HW highly weathered classification s accompanying MW moderately weathered accompanying SW slightly weathered for further infor FR fresh moisture Water D dry M level at date / time M Moist W weter	description mation. gra vf	r sheets in size very fi fine mediu	ŀ	S soft F firm St stiff VSt very stiff H hard Fb friable material boundari	L loose MD medium de D dense VD very dense


S. S. S.

	e	al		tra				Suite 6.01, 55 Miller Street, Pyrmont, NSW 2009 Ph: (02) 9516 0722 Fax: (02) 9516 0744	Sheet:		BH4
	Bo	ore	h	le	Log			service@eiaustralia.com.au		D:	
	Pro Loc Equ Dia	ent: ncipal: ject: cation: uipmer meter: ling in		ation			22 HA	Slope: -90° Bearing:	Started Finishe Logged Checke RL Sun Datum	ed: d: ed: 2	SL 20-4-18
	method	water	samples	sample method / QC	depth (m)	PID reading	material code	material description soil type, particle characteristics or fines plasticity, colour, secondary and minor components	moisture + density/consistency	Odour (Y/N)	well construction
0,2-	De	3.	<u>U</u>	¢	115	07		CONCRETE SAND, f-mg, xellow	~ M	N	
05-	0,	0			05-	14	Ø	FI			
								Refusal.			
method AS AD RR W CB HA D V		auger auger roller/ washl claw c hand diatub V-bit	drill* tricone core or blad auger		odour HC Su odour W	h s strength i	ydrocarbor olvent ulfur ndex reak	HW highly weathered classification system. Reaccompanying descripting MW moderately weathered accompanying descripting SW slightly weathered for further information. FR fresh moisture water D dry	ified efer on sheets grain size /f very fir	1e	consistency density index VS very soft S soft F firm MD medium dense St stiff D dense VSt very stiff H hard Fb friable
T NMLC NQ, HQ, *bit show		TC-bi NMLC wirelin	core core		m s vs	n s	noderate trong ery strong	inflow W wet r	m mediur		material boundaries — known boundary — probable boundary — possible boundary

	Contan	Dre	i Reme	diation	alia Geotechnicat Log	1) 2) 2)			Suite 6.01, 55 Miller Stri Pyrmont, NSW 2(Ph: (02) 9516 0' Fax: (02) 9516 0' service@eiaustralia.com	009 722 744	BH Nc Sheet: Job No Started	0:	BH5		
	Prir	ncipal: ject:				F	12	3796			Finishe	ed:	0-4-	18	1
	Loc	ation: uipmer	nt:				1.1		Slope: -90°		Check RL Su	ed:	SL		_
	Dia	meter		ation		mate	rial inform	7 nation	Bearing:		Datum				-
	method	water	samples	sample method / QC	depth (m)	PID reading	material code	material de soil type, particle character colour, secondary and	istics or fines plasticity,		moisture + density/consistency	Odour (Y/N)	well constr	ruction	
					015-			CONCRET	E.						-
0,3-	01	Ø,	14	·		1.0		F, with red	Prick agments						•
0,6-	0,	7.			-	7.5		NI	<u> </u>	5					-
				1				TEOH (a)	08m]
					1			TDD							-
															-
											-				-
															-
															-
			- 12												-
															-
											1-201				-
															-
															-
															-
															-
														laste Alexandre	-
															-
method					odour	index		weathering	Cleasification sumb	ala and aa				danaiku in	<u> </u>
AS AD RR W CB HA D V		auge roller wash claw	or blac auger be	e Je bit	odour HC S Su odour w	strength	weak	n XW extremely weatherd HW highly weathered MW moderately weathered SW slightly weathered FR fresh water level at date / time	Classification symb description based o classification syster accompanying desc for further informatii moisture D dry M moist	n unified n. Refer cription sh	eets	ine	consistency VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable	L loos MD med D den	y loose se dium dens
T NMLC NQ, HQ, *bit show		TC-b NML wirel	it C core ine cor	е	m s vs	5	noderate strong very strong	inflow	W wet Wp plastic limi WI liquid limit	m	mediu coars		material boundar	ries known bound probable bou possible bou	undary

	Contan	Dre	Reme	ediation (alia Geotechnica) Log			Suite 6.01, 55 Miller Street, Pyrmont, NSW 2009 Ph: (02) 9516 0722 Fax: (02) 9516 0724 service@eiaustralia.com.au BH No: Sheet: Job No:	
	Prir Pro	icipal:					I	E 23796 Started: Finished: 20-6-18 Logged:	
	Equ Dia	iipmei meter	nt:	ation		1	rial informa	Checked: DC A Slope: -90° RL Surface: Bearing: Datum:	
	method	water	samples	sample method / QC	depth (m)	PID reading	material code	material description Very secondary and minor components well construction	
0.2	12	U.	- 191		01(5-			CONCRETE	
Ocha mba	1					4			-
0.0-1	1				-			TOH QO.8	
						-		TDR.	-
									-
									_
AD RR W CB HA D		auger roller/ wash claw hand diatut	(tricone bore or blad auger be	9		trength		HW highly weathered classification system. Refer S soft L ke MW moderately weathered accompanying description sheets F firm MD moderately SW slightly weathered for further information. St stiff D d FR fresh moisture grain size H hard	index ery loose ose edium dense ense ery dense
V T NMLC NQ, HQ, I *bit show	PQ	wireli	t C core ne core		w m s vs	r	weak noderate strong very strong	Image: Second	oundary

BC)re	Reme	diation G	lia Log					0.01, 55 Miller Street Pyrmont, NSW 2009 Ph: (02) 9516 0722 Fax: (02) 9516 074 @eiaustralia.com.au	9 2 4	BH No: Sheet: Job No	:	BH7	
Proj	cipal:				1						Started Finishe Logged Checke	id: I: g	SL 20-4	-18
Diar	ipmer meter:		ation		mater	ial inform	tion		Slope: -90° Bearing:		RL Sur Datum:			
method	water	samples	sample method / QC	depth (m)	PID reading	material code	material soil type, particle charac colour, secondary a		ines plasticity,		moisture + density/consistency	Odour (Y/N)	well constru	ction
.0.2				2.15	08		CONCRET Brick -	E	entr					
							EOH O) 0.	3 M					
							Refush		on					
							Brick							
thod	auge roller wash claw hand diatu		e de bit		t s strength		HW highly weathered MW moderately weathered SW slightly weathered FR fresh water		Classification symbols description based on classification system. accompanying descrip for further information moisture D dry	unified Refer ption she grain s vf	eets size very fi	ne	consistency VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable	density in VL very L loos MD mec D den VD very
LC , HQ, PQ . shown by s	wirel	oit C core ine co	re	w m s vs	r	weak moderate strong very strong	Ievel at date / time Inflow Inflow		M moist W wet Wp plastic limit WI liquid limit	f m c	fine mediu coarse			es known boun probable bou possible bou

Suite 6.01, 55 Miller Street, Pyrmont, NSW 2009 Ph: (02) 9516 0722 Fax: (02) 9516 0744 service@eiaustralia.com.au

И9 BH No: Sheet:

Job No:

Started Client: E23796 Principal: Finished: Project: Logged: Checked: Location: Equipment: Slope: -90° RL Surface: Bearing: Datum: Diameter: - drilling information material information moisture + density/consistency well construction material description method / material code reading (NVA) E method samples sample r QC soil type, particle characteristics or fines plasticity, Odour (depth water PIDI colour, secondary and minor components Oils. 0,3 1.2 6, 0. N O 1,0 00 15 TEOH 1.Sm method odour index weathering Classification symbols and soil consistency density index very loose AS auger screw* HC hydrocarbon XW extremely weatherd description based on unified VS very soft VL AD auger drill* S solvent HW highly weathered classification system. Refer SF soft loose moderately weathered accompanying description sheets MD medium dense RR roller/tricone Su sulfur MW firm dense for further information. St stiff D W washbore SW slightly weathered VD very stiff very dense claw or blade bit FR fresh VSt CB HA hand auger moisture grain size Н hard water odour strength index Fb friable D diatube D dry vf very fine V-bit w weak level at date / time V M W moist f fine m moderate material boundaries TC-bit medium Т inflow wet m S strong known boundary NMLC NMLC core plastic limit Wp С coarse complete outflow probable boundary possible boundary VS very strong _ NQ, HQ, PQ wireline core WI liquid limit ? *bit shown by suffix e.g. ADV 1 partial outflow

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02 Rev1

APPENDIX H

Chain of Custody and Sample Receipt Forms

Ref: Interlab_COC_EI_SPOCAS_SL.doc/ver.1/06.07.2006/Page 1 of 2

Uncontrolled template when printed

Suite 6.01, 55 Miller Street Pyrmont NSW 2009

SGS Job No: SE178319 SE178319.013 SE178319.011 SE178319.010 SE178319.007 SE178319.006 SE178319.005 SE178319.004 SE178319.003 Address To: Send To: Final Report Required: Relinquished By: Emily Yin SE178319.012 SE178319.002 Sample No NOTES:* Client Address: Attention: SHARON_LI G BH2M 2.4-2.5 BH2M 1.4-1.5 BH1M 4.4-4.5 BH1M 2.1-2.2 BH2M 3.5-3.6 BH2M 0.9-1.0 BH1M 3.5-3.6 BH1M 3.0-3.1 BH1M 1.1-1.2 BH1M 0.6-0.7 Sample No. Elizabeth St, Liverpool NSW Client Job No: E23796 - 26 Yes / No / NATA (Address As Below) Us / Client* Us / Client CHAIN OF CUSTODY & ANALYSIS REQUEST Environmental Investigations (FOR INTERLAB WORK) Date/Time: 24/04/2018 Final Report Due: Prelim Report Due: Water × × × × × × Soil × × × × Matrix 20/04/18 20/04/18 20/04/18 20/04/18 20/04/18 20/04/18 20/04/18 20/04/18 20/04/18 20/04/18 Date Sampled Ice 01/05/2018 01/05/2018 Preservation Acid Method Other None Quote No: Special Prices Apply: × × × × × SPOCAS × × × × × Received By *** Special Prices, Quotes, Clients MUST BE Referred To. Received: 26 – Apr – 2018 SGS Cairns Environmental CE133191 COC SLIM CLIENT CODE: EI AUSTRALIA 12269923_11762409 Analysis Required Send Results to:-Initiating Laboratory: Initiating Contact: Received: 23 – Apr – 2018 SGS Alexandria Environmenta SE178319 SUBCON Date/Time SGS Sydney - Alexandria Emily Yin (<u>au.samplereceipt.sydney@sgs.com</u>) AU.Environmental.Sydney@sgs.com Client:**Environmental Investigation Yes / No COURIER SERVICE: CONSIGNMENT No: Client Contacts for AUENVSE INVOICE = Invoice SGS_SYD_REPORTS_PM = Remarks REPORTS SGS_SYD_SRA_PM = Sample Receipt Advice STARTRACK SPOCAS 501

Receiving Laboratory:

SGS Cairns

Ref: Interlab_COC_EI_SPOCAS_SL.doc/ver.1/06.07.2006/Page 2 of 2

Uncontrolled template when printed

Suite 6.01, 55 Miller Street Pyrmont NSW 2009

Environmental Investigations

opecial Phices, Quotes, Chefits MUST DE Referred To.

SLIM CLIENT CODE: EI AUSTRALIA 12269923_11762409

NOTES: CIIETIL AUDIESS. ALIETIL

>>>											Rec	Receiving Laboratory:	Labo	ratory		GS C	SGS Cairns	5,
SGS	CHAIN OF CUSTODY & ANALYSIS REQU (FOR INTERLAB WORK)	STO		USTODY & ANALYSI (FOR INTERLAB WORK)	RK)	S R	EQL	JEST	-		Initi Sen	Initiating Laboratory: Initiating Contact: Send Results to:-	Labc Contac	prator ht:		GS Sy mily Yin U.Envin	dney - (<u>au.sam</u> onment	SGS Sydney - Alexandria Emily Yin (<u>au.samplereceipt.sydney@sgs.com)</u> AU.Environmental.Sydney@sgs.com
Final Report Required:	Yes / No / NATA	Prelir	n Re	Prelim Report Due:		01/05	01/05/2018		Spe	cial F	rices	Special Prices Apply:				X	Yes / No	Ō
- - 1]	ן			5	0										t	-
Send To:	Us / Client	Final	Rep	Final Report Due:		01/05	01/05/2018		Quo	Quote No:						C	ient:*'	Client:**Environmental
																In	Investigation	ation
Address To:	Us / Client*		Z	Matrix		Prese	Preservation	Ч			Analy	Analysis Required	equir	ed		_		Remarks
	(Address As Below)					Me	Method											
SGS Job No:	Client Job No: E23796 - 26			d					s									Client Contacts for AUENVSE:
SE178319	Elizabeth St, Liverpool NSW	ər) pleo			er	е	CA									SGS_SYD_REPORTS_PM =
Sample No.	Sample No.	Wate	Soil	Date Sam	Ice	Acid	Othe	Non	SPC									SGS_SYD_SRA_PM =
SE178319.014	BH2M 4.0-4.1		×	20/04/18					×									SPOCAS
SE178319.015	BH2M 4.5-4.6		×	20/04/18					×									
SE178319.023	BH8M 1.9-2.0		×	20/04/18					×									
SE178319.024	BH8M 2.4-2.5		×	20/04/18					×									
															_			
																		COURIER SERVICE:
																		STARTRACK
																		CONSIGNMENT No:
Relinquished By: Emily Yin	Yin	Date/	Time	Date/Time: 24/04/2018						Rec	Received By:	By:			D	Date/Time	me	

ε

CLIENT DETAIL	S	LABORATORY DETA	NLS
Contact	Sharon Li	Manager	Jon Dicker
Client	SGS EHS SYDNEY	Laboratory	SGS Cairns Environmental
Address	5258 201 EHS SYDNEY UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015	Address	Unit 2, 58 Comport St Portsmith QLD 4870
Telephone	61 2 95160722	Telephone	+61 07 4035 5111
Facsimile	02 8594 0499	Facsimile	+61 07 4035 5122
Email	au.environmental.sydney@sgs.com	Email	AU.Environmental.Cairns@sgs.com
Project	E23796-26 Elizabeth St Liverpool NSW	Samples Received	Thu 26/4/2018
Order Number	SE178319	Report Due	Tue 1/5/2018
Samples	14	SGS Reference	CE133191

_ SUBMISSION DETAILS

This is to confirm that 14 samples were received on Thursday 26/4/2018. Results are expected to be ready by COB Tuesday 1/5/2018. Please quote SGS reference CE133191 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	14 X SOIL
Date documentation received	26/4/2018	Type of documentation received	COC
Number of eskies/boxes received	1	Samples received in good order	Yes
Samples received without headspace	Yes	Sample temperature upon receipt	Chilled
Sufficient sample for analysis	Yes	Turnaround time requested	3 DAY TAT

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

3 day tat

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CLIENT DETAILS

Client SGS EHS SYDNEY

- SUMMARY OF ANALYSIS -

Project E23796-26 Elizabeth St Liverpool NSW

No.	Sample ID	Moisture Content	SPOCAS Net Acidity Calculations	TAA (Titratable Actual Acidity)	TPA (Titratable Peroxide Acidity)
001	BH1M 0.6-0.7	1	6	7	21
002	BH1M 1.1-1.2	1	6	7	21
003	BH1M 2.1-2.2	1	6	7	21
004	BH1M 3.0-3.1	1	6	7	21
005	BH1M 3.5-3.6	1	6	7	21
006	BH1M 4.4-4.5	1	6	7	21
007	BH2M 0.9-1.0	1	6	7	21
008	BH2M 1.4-1.5	1	6	7	21
009	BH2M 2.4-2.5	1	6	7	21
010	BH2M 3.5-3.6	1	6	7	21
011	BH2M 4.0-4.1	1	6	7	21
012	BH2M 4.5-4.6	1	6	7	21
013	BH8M 1.9-2.0	1	6	7	21
014	BH8M 2.4-2.5	1	6	7	21
					·

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction . source: [Untitled].pdf page: 5 SGS Ref: SE178319_COC

Sheet of	4	_			Sam	nple N	/latrix								Ana	lysis								Comments
site: 26 Eli	zabet	h St,		Project No:												ty)								HM A Arsenic
	NSI	N		E23791			ıt, etc.)	AHs stos	AHs					tion	change)	onductivi								Cadmium Chromium Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	2015	499			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			S	s Quantification	CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite						HM ^B / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample ID	Laboratory	Container	S	ampling	WATER		IERS	P/OF	HM A /T	HM A /T	BTEX	VOCs	Asbestos	Asbestos	/ CE	/ EC	water	sPOCAS	PFAS				0	Cadmium Chromium
	ID	Туре	Date		WA	SOIL	ŧ	N O I	HN	HN	BT	VC	As	As	/ Hd	Hd	De	sP	PF				TCL	Lead Mercury Nickel
BHIM 0.2-0.3	1	J. 24B	20/4/	18 AM		X		Х																Dewatering Suite
016-0,7	2		1	1		1			Х							_		X						TDS / TDU Hardness
1.1-1.2	3																	X						Total Cyanide Metals (AI, As, Cd, Cr,
1.6-1.7																								Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
2.1-2.2	4																	X						PAH Total Phenol
2.5-2.6																		\sim						LABORATORY TURNAROUND
3.0-3.1	5																	X						
3.5-3.6	G															9		$\overline{\mathbf{v}}$			Standard			
3.9-40																							_	24 Hours
44-45	7																	Х				+	_	48 Hours
4.9-50																		<u> </u>				+	-	Other
V 5.4-5.5		V	V																	_		-	-	
Container Type: J= solvent washed, acid S= solvent washed, acid P= natural HDPE plastic VC= glass vial, Teflon S	f rinsed glas	on sealed, glass ss bottle	s jar			Inves		r: I atte with	stand	t thes ard El	e sam field s	sampli	vere cong pro	cedur	es.	ccorda	ance		eport v			Classi	ficatio	n Table
ZLB = Zip-Lock Bag						Prir						Prin		-			_	e,				ria Lal	horat	0.00
eiaust	ralia	Su I	PYRMOI Ph: 9	55 Miller Str NT NSW 200 9516 0722	9	Date	23	/	Li 18			Sign Date	P	500 B 118	ba wh	7-	1		SE1	783	19	COC		ur y
Contamination Remedia	tion Geptechn	0	-	Istralia.com.: 18 FORM v.4 - SGS	au			ANT nail lab		ry resu	ults to:	lab@	Deia	ustra	lia.co	om.a	u	1	Receiv	ed: 23	3 — Apı	r-201	8	

Sheet of	4	_			Sam	ple N	latrix								Ana	lysis								Comments
site: 26 El. Liverpoul		h St		Project No:											(8	ivity)								HM A Arsenic Cadmium
Liverpoul	NS	SN		E23796			nt, etc.)	PAHs	SHA					ation	change	conduct								Chromium Copper Lead Mercury
Laboratory:	ALEXAN	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	2015	499			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	HM A /TRH/BTEX			SC	os Quantification	CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	S					HM ^B / PAH	Nickel Zinc HM B Arsenic Cadmium
Sample ID	Laboratory ID	Container Type	Sa	ampling Time	WATER	SOIL	OTHERS	HMA /	HMAN	HM A /1	BTEX	VOCs	Asbestos	Asbestos	pH / CE	pH / EC	Dewate	sPOCAS	PFAS				TCLP	Chromium Lead Mercury
BH2M 0.2-0.3	8	J. 246	20/4/	118 AM		X		X		(1					Nickel Dewatering Suite
1 0.5-0.6	0	1		1		1			X															pH & EC TDS / TDU Hardness
0.9-1.0										I.								\times						Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
1.4-1.5	- 11																	X						TRH (F1, F2, F3, F4) BTEX
1.9-2.0			-																					PAH Total Phenol
2.4-25	12																	Х						LABORATORY TURNAROUND
2.9-3.0																								Standard
3.5-3.6	13																	X						24 Hours
4.0-4.1	14																	X						48 Hours
4.5-4.6	15																	X						72 Hours
V 9.7-9:8																								Other
BH3 0.2-0.3	16	V.	V	V		V		X																
Container Type: J= solvent washed, ac S= solvent washed, ac	id rinsed gla		ss jar			Inves	stigato	or: I atte with			se sam I field					ccord	ance	F	Report	with E	I Waste	e Class	sificatio	on Table
P= natural HDPE plast VC= glass vial, Teflon ZLB = Zip-Lock Bag						Samp Prin		ame (El):			Recei Prir	ived by	0	1	_		Sam	pler's	Comr	nents:			
Lip Look Bug					_	1			SL				nature	S	ip	2								
02		S		, 55 Miller St NT NSW 20		Date	nature	Shul	à			-	P	A	Sech	-1								
eiaus	trali	а	Ph:	9516 0722			23	17				23	104	18	e	3	\sim							
Contamination Herited	anton i Geotec	9	-	UStralia.com	.au			TANT mail lat		ory res	ults to	: lab(@eia	ustra	alia.co	om.a	u							

Sheet 3 o	4	_			Sam	ple N	latrix								Ana	lysis								Comments
site: 26 Eli Liverpool	zabet	h St		Project No:											e)	tivity)								HM A Arsenic Cadmium Chromium
Liverpool	Á	ISW		E23796			ıt, etc.)	AHs	AHs					tion	chang	onpuo								Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox 9 NDRIA NSW 94 0400 F: 0	2015	99			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	HM ^A /TRH/BTEX			SO	os Quantification	CEC (cation exchange)	pH / EC (electrical conductivity)	ering Suite	S					HM ^B / PAH	Mercury Nickel Zinc HM <u>B</u> Arsenic Cadmium
Sample ID	Laboratory ID	Container Type	Sa Date	mpling Time	WATER	SOIL	OTHERS	HMA /	HMAN	HMAN	BTEX	VOCs	Asbestos	Asbestos	pH / CE	pH / EC	Dewatering	sPOCAS	PFAS				TCLP H	Chromium Lead Mercury Nickel
BH3 0.9-1.0		J,ZLB	20/4/	18 A.M		X				1														Dewatering Suite
1 1.4-1.5	-					1																		TDS / TDU Hardness
V 1.9-2.0																								Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
BH4 0.2-07	177							X															_	TRH (F1, F2, F3, F4) BTEX
V. 0.5-0.	,																							PAH Total Phenol
BH5 0.3-0	18							X																LABORATORY TURNAROUND
V 0.6-0.																			1		X Standard			
BH6 0.3-0.9	191							Х																24 Hours
V 0.6-0.	29								X														2	48 Hours
BH7 0.2-0.3	20							Х															-	72 Hours
BH8M 0.5-0.	22							X																Other
V 1.9-2	22	V	V	1		1												Х						
Container Type: J= solvent washed, a S= solvent washed, a P= natural HDPE plas	d rinsed gla		ss jar						stand			nples v sampli				ccorda	ance	F	Report	with E	I Wast	e Class	sificatio	on Table
VC= glass vial, Teflor ZLB = Zip-Lock Bag						Samp Prir		ame (EI)):			Recei	ived by	(SGS)	1			Sam	pler's	Comr	ments:			
						1	nature	5	<u>L</u>				ature	Su	ba									
12				55 Miller St NT NSW 20			6	Shul	1			-	P	A	suh	-1								
Piaus	trali	2	Ph: 9	516 0722		Date	Z	- 11	and the second second	18		Date 2	3/04	118	- @	2 3	. 1							
Contamination Remo	diatron (Center)		-	Istralia.com. 18 FORM v.4 - SGS	.au			TANT nail lat		ry res	ults to:	: lab(@eia	ustra	lia.co	om.a	u							

	HM A Arsenic
Site: 26 Elizabeth St Project No: Liverpool NSW E23796 (i) HR Store Stor	Cadmium Chromium Copper Lead
Laboratory: SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0400 E: 02 8594 0499 D: 02 8594 0400 E: 02 8594 0499	Mercury Nickel Zinc HM <u>B</u> Arsenic Cadmium
	Chromium Lead Mercury Nickel
RURD 2/125 DR T 7/B D/4/18 AM X	Dewatering Suite
	TDS / TDU Hardness
1 09-10 26	Total Cyanide Metals (AI, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
	TRH (F1, F2, F3, F4) BTEX
P/	PAH Total Phenol
	LABORATORY TURNAROUND
	X Standard
	24 Hours
ab heponed	48 Hours
	72 Hours
	Other
Container Type: J= solvent washed, acid rinsed, Teflon sealed, glass jar S= solvent washed, acid rinsed glass bottle D= solvent washed, acid rinsed glass bottle	n Table
P= natural HDPE plastic bottle Sampler's Name (EI): Received by (SGS): Sampler's Comments: VC= glass vial, Teflon Septum Print Print Image: Sampler's Comments: ZLB = Zip-Lock Bag Print Image: Sampler's Comments: Image: Sampler's Comments:	
SL Suba	
Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	
Ph: 9516 0722 Ph: 9516 0722 Ph: 9516 0722	
Containing of the second se	

CLIENT DETAILS	S	LABORATORY DETA	ILS
Contact	Sharon Li	Manager	Huong Crawford
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sharon.li@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	E23796 - 26 Elizabeth St, Liverpool NSW E23796 30	Samples Received Report Due SGS Reference	Mon 23/4/2018 Tue 1/5/2018 SE178319

_ SUBMISSION DETAILS

This is to confirm that 30 samples were received on Monday 23/4/2018. Results are expected to be ready by COB Tuesday 1/5/2018. Please quote SGS reference SE178319 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 23/4/2018 Yes 4.3°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 29 Soil, 1 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

SPOCAS subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146. Fourteen soil and one water sample have been placed on hold.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

Project E23796 - 26 Elizabeth St, Liverpool NSW

		OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
No. 001	Sample ID	29	14	26	11	<u>⊢ш</u> 7	⊢⊥ 10	> 12	> ⊥ 8
001	BH1M 0.2-0.3	29	14						
002	BH1M 0.6-0.7	-	-	26	-	7	10	12	8
008	BH2M 0.2-0.3	29	14	26	11	7	10	12	8
009	BH2M 0.5-0.6	-	-	26	-	7	10	12	8
016	BH3 0.2-0.3	29	14	26	11	7	10	12	8
017	BH4 0.2-0.3	29	14	26	11	7	10	12	8
018	BH5 0.3-0.4	29	14	26	11	7	10	12	8
019	BH6 0.3-0.4	29	14	26	11	7	10	12	8
020	BH6 0.6-0.7	-	-	26	-	7	10	12	8
021	BH7 0.2-0.3	29	14	26	11	7	10	12	8
022	BH8M 0.5-0.6	29	14	26	11	7	10	12	8

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E23796 - 26 Elizabeth St, Liverpool NSW

SUMMAR	Y OF ANALYSIS								
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
025	BH9 0.2-0.3	29	14	26	11	7	10	12	8
026	BH9 0.9-1.0	-	-	26	-	7	10	12	8
027	QD1	-	-	-	-	7	10	12	8
029	TS1	-	-	-	-	-	-	12	-
030	TB1	-	-	-	-	-	-	12	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS _

Client EI AUSTRALIA

Project E23796 - 26 Elizabeth St, Liverpool NSW

		Fibre Identification in soil	in Soil	Moisture Content	Sample Subcontracted
No.	Sample ID	Fibre Ide	Mercury in Soil	Moisture	Sample
001	BH1M 0.2-0.3	2	1	1	-
002	BH1M 0.6-0.7	-	1	1	1
003	BH1M 1.1-1.2	-	-	-	1
004	BH1M 2.1-2.2	-	-	-	1
005	BH1M 3.0-3.1	-	-	-	1
006	BH1M 3.5-3.6	-	-	-	1
007	BH1M 4.4-4.5	-	-	-	1
008	BH2M 0.2-0.3	2	1	1	-
009	BH2M 0.5-0.6	-	1	1	-
010	BH2M 0.9-1.0	-	-	-	1
011	BH2M 1.4-1.5	-	-	-	1
012	BH2M 2.4-2.5	-	-	-	1
013	BH2M 3.5-3.6	-	-	-	1
014	BH2M 4.0-4.1	-	-	-	1
015	BH2M 4.5-4.6	-	-	-	1
016	BH3 0.2-0.3	2	1	1	-
017	BH4 0.2-0.3	2	1	1	-
018	BH5 0.3-0.4	2	1	1	-
019	BH6 0.3-0.4	2	1	1	-
020	BH6 0.6-0.7	-	1	1	-
021	BH7 0.2-0.3	2	1	1	-
022	BH8M 0.5-0.6	2	1	1	-
023	BH8M 1.9-2.0	-	-	-	1
024	BH8M 2.4-2.5	_	-	-	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

Project E23796 - 26 Elizabeth St, Liverpool NSW

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water
025	BH9 0.2-0.3	2	1	1	-
026	BH9 0.9-1.0	-	1	1	-
027	QD1	-	1	1	-
028	QR1	-	-	-	12
030	TB1	-	-	1	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

Project E23796 - 26 Elizabeth St, Liverpool NSW

No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	Volatile Petroleum Hydrocarbons in Water
028	QR1	1	7	10	8

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction . source: [Untitled].pdf page: 19 SGS Ref: SE178657_COC

Sheet of Analysis Communication Site: Project No: Project No: Project No: Project No: 26 Elizabeth St. Project No: Figure Liboratory: SGS Australia Unit 16, 33 Maddox Street, Alfor Marcury Sample Liboratory Sampling Sampling Sample Liboratory Container Sampling Sample Liboratory Container Sampling Sample Liboratory Container Sampling Demantation Container Sampling D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D <t< th=""><th></th></t<>	
Laboratory: SGS Australia	
Laboratory: SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 ie ie	
Cobber Piconal NSM Time Marce NSM Time Piconal NSM Time Marce Soll Norther Piconal Sampling Nickel Sample Soll Date Dewatering Suite Dewatering Direct Date Time Mark All Mark Mark All Mark Mark Mark	
BHIM S, P.VXX 2-5-18 AM. X X X Dewatering H&EC XXX X Dewatering H&EC XXXX X TDS/TDI	
BHZM Z S. P. WOX	ide
10 191 D 11 D 11 1 Cu, Pb, H	
GWQDI Y SPVCX2 X TRH (F1. BTEX PAH	2, 53, 54)
GWQRB1 3 S, P. VCX2 / / / / / / / / / / / / / / / / / / /	ATORY
GWARI SCRITX	ROUND
GWTSI 15 VC Lab Preparred X	ndard
GWTB/ \$ VC Lab property V X	Hours
	Hours
	Hours
	er
Container Type: J= solvent washed, acid rinsed, Teflon sealed, glass jar Investigator: I attest that these samples were collected in accordance with standard El field sampling procedures. Report with El Waste Classification Table	
P= natural HDPE plastic bottle Sampler's Name (EI): Received by (SGS): Sampler's Comments:	
SC SGS EHS Alexandria Laboratory	
Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	
Ph: 9516 0722 3-5-18 03 410 10.15 SE178657 COC	
Contravelent i Formediction i Gentechnical Iab@eiaustralia.com.au IMPORTANT: Received: 03 - May - 2018 Contravelent i Formediction i Gentechnical Contravelent i Formediction i Gentechnical IMPORTANT: Received: 03 - May - 2018	

CLIENT DETAIL	.8	LABORATORY DETA	ILS	
Contact	Sharon Li	Manager	Huong Crawford	
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	sharon.li@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E23796 - 26 Elizabeth St, Liverpool NSW	Samples Received	Thu 3/5/2018	
Order Number	E23796	Report Due	Thu 10/5/2018	
Samples	7	SGS Reference	SE178657	

_ SUBMISSION DETAILS

This is to confirm that 7 samples were received on Thursday 3/5/2018. Results are expected to be ready by COB Thursday 10/5/2018. Please quote SGS reference SE178657 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 3/5/2018 Yes 12.0°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 7 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

5 Australia 5 Australia

stralia t +61 2 8594 0400 stralia f +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E23796 - 26 Elizabeth St, Liverpool NSW

SUMMAR	Y OF ANALYSIS				1				
No.	Sample ID	Mercury (dissolved) in Water	Metals in Water (Dissolved) by ICPOES	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Total Phenolics in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH1M	1	1	22	1	8	10	79	8
002	BH2M	1	1	22	1	8	10	79	8
003	BH8M	1	1	22	1	8	10	79	8
004	GWQD1	1	-	-	-	8	10	12	8
005	GWQR1	1	-	-	-	8	10	12	8
006	GWTS1	-	-	-	-	-	-	12	-
007	GWTB1	-	-	-	-	-	-	12	-
				1	1			-	_

Sheet	of				Sam	nple N	latrix									Ana	lysis								Comments
Site: 26 Liverpoo	E (iZab >/ Envirolal	eth S NSW Services	F E.	roject No: 23796			Paint, etc.)	X/PAHs bestos	(/PAHs							exchange)	pH / EC (electrical conductivity)								HM <u>A</u> Arsenic Cadmium Chromium Copper
Sample	12 Ashle CHATSW P: 02 991 Laboratory	OOD NSW : 0 6200 Container	2067 Samp	ling	ËR		OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	НМ ^А /ТRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	TRH/BTEX	Hs	vocs	Asbestos	pH / CEC (cation	/ EC (electrics	sPOCAS				TCLP PAHs	TCLP HM A	TCLP HM ^B	Lead Mercury Nickel Zinc
ID		Туре	Date	Time	WATER	SOIL	ОТН	₹S	H	NH NH	TR	TR	PAHs	07	Ast	Fg	Hđ	sP(. –	TCI	TCI	TCI	HM ^{<u>B</u> Arsenic}
QT1			20/4/18	AM		X	_		-	Х															Cadmium
		-														_ i.	~								Chromium Lead
																									Mercury Nickel
	ENVIROLAB	Envirolab S 12 As	ervices hlay St						_																
		Chatswood NS Ph; (02) 99	W 2067 10 6200																						
	<u>Job No:</u>	190116																						<u> </u>	LABORATORY
	Date Receiv	ed: <u>23.4</u>	18 b																						
	Received B	Ambient	a.				<u> </u>																	-	Standard
	Cooling. Ice	Hcepack //	1 C						-																24 Hours
	Secondy. In																								48 Hours
																									72 Hours
																<u> </u>									Other
					L											<u> </u>									
Investigator:	I attest tha	t these samp	oles were coll	ected in a	ccord	ance	Samp	ler's Na	me (El):			Rece		(Enviro)iab): 									
			ampling proc	euures.				, 				_		15L	<u>ς</u>										
Sampler's C	omments:						Pri	nt		SL	-		Prir	ידר "	Ę					ſ		וב		tr	alia
							Sigi	nature S	m	Li.			Sign	ature	2	/				Cor				LI (liation 1	
Container Type: J= solvent washed, acid rinsed, Teflon sealed, glass jaR				Date 23/4/18 Date 23.4.18						Contamination Remediation Geotechnical Suite 6.01, 55 Miller Street, PYRMONT NSW 2009															
S= solvent washed, acid rinsed glass bottle P= natural HDPE plastic bottle				IMPORTANT:						Ph: 9516 0722 lab@eiaustralia.com.au															
	/C= glass vial, Teffon Septum /LB = Zip-Lock Bag					Plea	se e-ma	ail Iab	orator	y resu	ilts to:	lab@)eiau	ustral	lia.co	m.au	u	- Cocuty 2016 FORM v.3 - SGS							

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

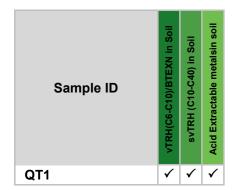
SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Lab Email

Sample Login Details	
Your reference	E23796, Liverpool
Envirolab Reference	190116
Date Sample Received	23/04/2018
Date Instructions Received	23/04/2018
Date Results Expected to be Reported	01/05/2018

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11.9
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil


Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Sheet	of	1_		-	Sam	iple N	latrix									Ana	lysis							_	Comments
Site: 26 Liv Laboratory	Envirola	ey Street, NOOD NSW 2		oject No:			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^{.A} /ТRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	тех			SO	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	AS	Aluminium			PAHs	HM A	HMB	HM ^A Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc
Sample ID	Laboraton ID	Container Type	Samp Date	ling Time	WATER	SOIL	DTHERS	HM ≜ OCP/C	HMA/	HM∆/	TRH/B	TRH/BTEX	PAHs	vocs	Asbestos	pH / CI	pH / E(sPOCAS	Alur			TCLP PAHs	TCLP HM ^A	TCLP HM ^B	HM ^B
GWAT	1)	S.P.VX2	2-51	AM	X					X									X						Arsenic Cadmium
																							_		Chromium Lead
 				<u> </u>	 																				Mercury Nickel
				<u> </u>						а <u>в</u> Сл	alswoo	iab Ser 1 <u>2 Ashi</u> 4 NSW	2067								_				
								·	<u> </u>	19	рн: (0) 074 3/5	2) 9910 5	6200									-			LABORATORY
			-		-				∍ Re ⊧a Re	ceived: ceived:	-3/5 15:30	118 1.2	°C.				-								TURNAROUND
									ар: С	ceived: By od!/Am	eient	67										-			24 Hours
									anty:	kolagy	Broken	None											-		48 Hours
																									72 Hours
																									Other
			<u> </u>		L		Samp	ler's Na	me (E	[i):		<u>_</u>	Rece	ived by	(Enviro	lab):									
Investigator	with stand	at these samp lard El field sa	ampling proc	edures.	ICCOLO	ance															7	K			
Sampler's Comments:				Print SL. Signature Claudi				Print TE Signature					eiaustralia												
	ished, acid rir ashed, acid ri	nsed, Teflon seale Insed glass bottle Dittle					IMPORTANT:					Date 03,05.18					Contamination Remediation Geotechnical Suite 6.01, 55 Miller Street, PYRMONT NSW 20 Ph: 9516 0722				MONT NSW 2009				
VC= glass via ZLB = Zip-Lo	al, Teflon Sep							se e-m			y resu	ults to:	lab@	Deia	ustra	lia.co	m.a	L	lab@eiaustralia.com.au				COC July 2016 FORM v.3 - SGS		

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1

APPENDIX I Laboratory Analytical Reports

LIENT DETAILS		LABORATORY DETAI	L3
Contact	Sharon Li	Manager	Jon Dicker
Client	EI AUSTRALIA	Laboratory	SGS Cairns Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 2, 58 Comport St Portsmith QLD 4870
Telephone	61 2 95160722	Telephone	+61 07 4035 5111
Facsimile	02 8594 0499	Facsimile	+61 07 4035 5122
Email	au.environmental.sydney@sgs.com	Email	AU.Environmental.Cairns@sgs.com
Project	E23796-26 Elizabeth St Liverpool NSW	SGS Reference	CE133191 R0
Order Number	SE178319	Date Received	26 Apr 2018
Samples	14	Date Reported	01 May 2018

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(3146).

SIGNATORIES _____

Anthony Nilsson Operations Manager

Jon Dicker Manager Northern QLD

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 2 58 Comport St

St Portsmith QLD 4870

Australia t +61 7 4035 5111 f +61 7 4035 5122

www.sgs.com.au

CE133191 R0

	Sa	nple Number ample Matrix Sample Date ample Name	soil 20 Apr 2018	CE133191.002 Soil 20 Apr 2018 BH1M 1.1-1.2	CE133191.003 Soil 20 Apr 2018 BH1M 2.1-2.2	CE133191.004 Soil 20 Apr 2018 BH1M 3.0-3.1
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/4/2018						
% Moisture	%w/w	0.5	17	20	20	13

TAA (Titratable Actual Acidity) Method: AN219 Tested: 30/4/2018

рН КСІ	pH Units	-	6.6	5.7	4.9	6.0
Titratable Actual Acidity	kg H2SO4/T	0.25	<0.25	0.61	0.86	0.31
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	<5	12	17	6
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	<0.01	0.02	0.03	0.01
Sulphur (SKCI)	%w/w	0.005	<0.005	<0.005	0.012	0.009
Calcium (CaKCI)	%w/w	0.005	0.14	0.11	0.018	0.013
Magnesium (MgKCI)	%w/w	0.005	0.020	0.088	0.059	0.082

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 30/4/2018

Peroxide pH (pH Ox)	pH Units	-	7.5	6.0	5.5	6.5
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	0.49	2.0	<0.25
TPA as moles H+/tonne	moles H+/T	5	<5	10	40	<5
TPA as S % W/W	%w/w S	0.01	<0.01	0.02	0.06	<0.01
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	<5	22	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	1.1	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	<0.01	0.04	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	0.40	<0.01	<0.01	0.25
ANCE as moles H+/tonne	moles H+/T	5	80	<5	<5	50
ANCE as S % W/W	%w/w S	0.01	0.13	<0.01	<0.01	0.08
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.006	0.018	0.024	<0.005
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	<5	11	15	<5
Sulphur (Sp)	%w/w	0.005	0.007	0.021	0.036	0.014
Calcium (Cap)	%w/w	0.005	0.17	0.12	0.038	0.015
Reacted Calcium (CaA)	%w/w	0.005	0.031	0.007	0.020	<0.005
Reacted Calcium (CaA)	moles H+/T	5	16	<5	10	<5
Magnesium (Mgp)	%w/w	0.005	0.023	0.090	0.12	0.083
Reacted Magnesium (MgA)	%w/w	0.005	<0.005	<0.005	0.060	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	<5	<5	50	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-	-	-

s-Net Acidity	%w/w S	0.01	<0.01	0.04	0.05	<0.01
a-Net Acidity	moles H+/T	5	<5	24	32	<5
Liming Rate	kg CaCO3/T	0.1	<0.1	1.8	2.4	<0.1
Verification s-Net Acidity	%w/w S	-20	-0.08	0.01	0.01	-0.05
a-Net Acidity without ANCE	moles H+/T	5	<5	24	32	9
Liming Rate without ANCE	kg CaCO3/T	0.1	<0.1	1.8	2.4	NA

CE133191 R0

	Sa	nple Number ample Matrix Sample Date ample Name	Soil 20 Apr 2018	CE133191.006 Soil 20 Apr 2018 BH1M 4.4-4.5	CE133191.007 Soil 20 Apr 2018 BH2M 0.9-1.0	CE133191.008 Soil 20 Apr 2018 BH2M 1.4-1.5
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/4/2018						
% Moisture	%w/w	0.5	16	9.3	19	17

TAA (Titratable Actual Acidity) Method: AN219 Tested: 30/4/2018

pH KCI	pH Units	-	6.0	6.6	6.6	6.7
Titratable Actual Acidity	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Sulphur (SKCI)	%w/w	0.005	0.010	0.005	0.006	<0.005
Calcium (CaKCl)	%w/w	0.005	0.010	0.014	0.17	0.10
Magnesium (MgKCl)	%w/w	0.005	0.086	0.054	0.073	0.052

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 30/4/2018

Peroxide pH (pH Ox)	pH Units	-	6.9	8.7	7.1	6.9
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
TPA as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
TPA as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	0.25	0.25	0.45	0.30
ANCE as moles H+/tonne	moles H+/T	5	50	50	90	60
ANCE as S % W/W	%w/w S	0.01	0.08	0.08	0.14	0.10
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	<0.005	<0.005	0.015	<0.005
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	<5	<5	9	<5
Sulphur (Sp)	%w/w	0.005	0.013	0.005	0.021	<0.005
Calcium (Cap)	%w/w	0.005	0.012	0.020	0.20	0.11
Reacted Calcium (CaA)	%w/w	0.005	<0.005	0.006	0.021	0.006
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	10	<5
Magnesium (Mgp)	%w/w	0.005	0.091	0.059	0.083	0.059
Reacted Magnesium (MgA)	%w/w	0.005	0.005	<0.005	0.010	0.007
Reacted Magnesium (MgA)	moles H+/T	5	<5	<5	8	6
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-	-	-

s-Net Acidity	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
a-Net Acidity	moles H+/T	5	<5	<5	<5	<5
Liming Rate	kg CaCO3/T	0.1	<0.1	<0.1	<0.1	<0.1
Verification s-Net Acidity	%w/w S	-20	-0.05	-0.05	-0.09	-0.06
a-Net Acidity without ANCE	moles H+/T	5	7	<5	9	<5
Liming Rate without ANCE	kg CaCO3/T	0.1	NA	<0.1	NA	<0.1

CE133191 R0

	Sa	pple Number Imple Matrix Sample Date Ample Name	Soil 20 Apr 2018	CE133191.010 Soil 20 Apr 2018 BH2M 3.5-3.6	CE133191.011 Soil 20 Apr 2018 BH2M 4.0-4.1	CE133191.012 Soil 20 Apr 2018 BH2M 4.5-4.6
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/4/2018						
% Moisture	%w/w	0.5	14	15	16	14

TAA (Titratable Actual Acidity) Method: AN219 Tested: 30/4/2018

рН КСІ	pH Units	-	7.0	6.6	6.5	6.7
Titratable Actual Acidity	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Sulphur (SKCI)	%w/w	0.005	<0.005	<0.005	<0.005	0.006
Calcium (CaKCl)	%w/w	0.005	0.11	0.011	0.009	0.018
Magnesium (MgKCl)	%w/w	0.005	0.073	0.067	0.063	0.059

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 30/4/2018

Peroxide pH (pH Ox)	pH Units	-	7.0	6.7	6.6	6.7
TPA as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
TPA as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
TPA as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	0.40	0.25	0.25	0.25
ANCE as moles H+/tonne	moles H+/T	5	80	50	50	50
ANCE as S % W/W	%w/w S	0.01	0.13	0.08	0.08	0.08
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.006	<0.005	<0.005	<0.005
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Sulphur (Sp)	%w/w	0.005	0.010	0.007	0.005	0.010
Calcium (Cap)	%w/w	0.005	0.12	0.012	0.010	0.021
Reacted Calcium (CaA)	%w/w	0.005	0.019	<0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	10	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.082	0.071	0.069	0.070
Reacted Magnesium (MgA)	%w/w	0.005	0.010	<0.005	0.007	0.010
Reacted Magnesium (MgA)	moles H+/T	5	8	<5	5	8
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-	-	-

s-Net Acidity	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
a-Net Acidity	moles H+/T	5	<5	<5	<5	<5
Liming Rate	kg CaCO3/T	0.1	<0.1	<0.1	<0.1	<0.1
Verification s-Net Acidity	%w/w S	-20	-0.08	-0.05	-0.05	-0.05
a-Net Acidity without ANCE	moles H+/T	5	<5	<5	<5	<5
Liming Rate without ANCE	kg CaCO3/T	0.1	<0.1	<0.1	<0.1	<0.1

	Sa	ple Numbe Imple Matri Sample Dat ample Nam	x Soil e 20 Apr 2018	CE133191.014 Soil 20 Apr 2018 BH8M 2.4-2.5
Parameter	Units	LOR		
Moisture Content Method: AN002 Tested: 26/4/2018				
% Moisture	%w/w	0.5	18	17

TAA (Titratable Actual Acidity) Method: AN219 Tested: 30/4/2018

рН КСІ	pH Units	-	4.5	4.5
Titratable Actual Acidity	kg H2SO4/T	0.25	2.3	2.5
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	47	50
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.08	0.08
Sulphur (SKCI)	%w/w	0.005	0.037	0.048
Calcium (CaKCI)	%w/w	0.005	0.026	0.021
Magnesium (MgKCl)	%w/w	0.005	0.099	0.11

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 30/4/2018

Peroxide pH (pH Ox)	pH Units	-	5.0	5.0
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	2.9	3.3
TPA as moles H+/tonne	moles H+/T	5	60	67
TPA as S % W/W	%w/w S	0.01	0.10	0.11
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	12	17
Titratable Sulfidic Acidity as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	0.61	0.86
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	0.02	0.03
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.010	0.017
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	6	10
Sulphur (Sp)	%w/w	0.005	0.047	0.065
Calcium (Cap)	%w/w	0.005	0.029	0.025
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.10	0.11
Reacted Magnesium (MgA)	%w/w	0.005	<0.005	0.008
Reacted Magnesium (MgA)	moles H+/T	5	<5	6
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-

s-Net Acidity	%w/w S	0.01	0.09	0.10
a-Net Acidity	moles H+/T	5	53	60
Liming Rate	kg CaCO3/T	0.1	4.0	4.5
Verification s-Net Acidity	%w/w S	-20	0.00	0.01
a-Net Acidity without ANCE	moles H+/T	5	53	60
Liming Rate without ANCE	kg CaCO3/T	0.1	4.0	4.5

QC SUMMARY

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

TAA (Titratable Actual Acidity) Method: ME-(AU)-[ENV]AN219

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
pH KCI	LB055913	pH Units	-	5.8	0 - 2%	101%
Titratable Actual Acidity	LB055913	kg H2SO4/T	0.25	<0.25	0%	NA
Titratable Actual Acidity (TAA) moles H+/tonne	LB055913	moles H+/T	5	<5	0%	92%
Titratable Actual Acidity (TAA) S%w/w	LB055913	%w/w S	0.01	<0.01	0%	92%
Sulphur (SKCI)	LB055913	%w/w	0.005	<0.005	0%	96%
Calcium (CaKCl)	LB055913	%w/w	0.005	<0.005	2%	92%
Magnesium (MgKCI)	LB055913	%w/w	0.005	<0.005	1 - 2%	87%

TPA (Titratable Peroxide Acidity) Method: ME-(AU)-[ENV]AN218

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Peroxide pH (pH Ox)	LB055910	pH Units	-	6.1	0 - 10%	105%
TPA as kg H₂SO₄/tonne	LB055910	kg H2SO4/T	0.25	<0.25	0%	99%
TPA as moles H+/tonne	LB055910	moles H+/T	5	<5	0%	99%
TPA as S % W/W	LB055910	%w/w S	0.01	<0.01	0%	99%
ANCE as % CaCO ₃	LB055910	% CaCO3	0.01	<0.01	0 - 13%	
ANCE as moles H+/tonne	LB055910	moles H+/T	5	<5	0 - 13%	
ANCE as S % W/W	LB055910	%w/w S	0.01	<0.01	0 - 13%	
Sulphur (Sp)	LB055910	%w/w	0.005	<0.005	3 - 6%	86%
Calcium (Cap)	LB055910	%w/w	0.005	<0.005	2 - 3%	108%
Magnesium (Mgp)	LB055910	%w/w	0.005	<0.005	1 - 4%	91%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN218	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	SPOCAS Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES _

IS	Insufficient sample for analysis.	LOR	Limit of Reporting
LNR	Sample listed, but not received.	↑↓	Raised or Lowered Limit of Reporting
*	NATA accreditation does not cover the	QFH	QC result is above the upper tolerance
	performance of this service.	QFL	QC result is below the lower tolerance
**	Indicative data, theoretical holding time exceeded.	-	The sample was not analysed for this analyte
		NVL	Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Sharon Li	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sharon.li@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23796 - 26 Elizabeth St, Liverpool NSW	SGS Reference	SE178319 R0
Order Number	E23796	Date Received	23/4/2018
Samples	30	Date Reported	1/5/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample # 8 : Asbestos found in approx 40x15x3mm cement sheet fragments.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

kinty

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

VOC's in Soil [AN433] Tested: 27/4/2018

			BH1M 0.2-0.3	BH1M 0.6-0.7	BH2M 0.2-0.3	BH2M 0.5-0.6	BH3 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.001	SE178319.002	SE178319.008	SE178319.009	SE178319.016
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH4 0.2-0.3	BH5 0.3-0.4	BH6 0.3-0.4	BH6 0.6-0.7	BH7 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.017	SE178319.018	SE178319.019	SE178319.020	SE178319.021
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH8M 0.5-0.6	BH9 0.2-0.3	BH9 0.9-1.0	QD1	TS1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/4/2018	- 20/4/2018	- 20/4/2018	- 20/4/2018	- 20/4/2018
PARAMETER	UOM	LOR	SE178319.022	SE178319.025	SE178319.026	SE178319.027	SE178319.029
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[79%]
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[79%]
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[76%]
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	[82%]
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[81%]
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	-
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	-
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-

			TB1
			SOIL
			- 20/4/2018
PARAMETER	UOM	LOR	SE178319.030
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 27/4/2018

			BH1M 0.2-0.3	BH1M 0.6-0.7	BH2M 0.2-0.3	BH2M 0.5-0.6	BH3 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.001	SE178319.002	SE178319.008	SE178319.009	SE178319.016
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH4 0.2-0.3	BH5 0.3-0.4	BH6 0.3-0.4	BH6 0.6-0.7	BH7 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.017	SE178319.018	SE178319.019	SE178319.020	SE178319.021
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH8M 0.5-0.6	BH9 0.2-0.3	BH9 0.9-1.0	QD1
			SOIL	SOIL	SOIL	SOIL
			20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.022	SE178319.025	SE178319.026	SE178319.027
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 24/4/2018

			BH1M 0.2-0.3	BH1M 0.6-0.7	BH2M 0.2-0.3	BH2M 0.5-0.6	BH3 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/4/2018	- 20/4/2018	- 20/4/2018	- 20/4/2018	- 20/4/2018
PARAMETER	UOM	LOR	SE178319.001	SE178319.002	SE178319.008	SE178319.009	SE178319.016
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH4 0.2-0.3	BH5 0.3-0.4	BH6 0.3-0.4	BH6 0.6-0.7	BH7 0.2-0.3
PARAMETER	UOM	LOR	SOIL - 20/4/2018 SE178319.017	SOIL - 20/4/2018 SE178319.018	SOIL - 20/4/2018 SE178319.019	SOIL - 20/4/2018 SE178319.020	SOIL - 20/4/2018 SE178319.021
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	67
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	56
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	120
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	120
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

					BH9 0.9-1.0	QD1
PARAMETER	UOM	LOR	SOIL - 20/4/2018 SE178319.022	SOIL - 20/4/2018 SE178319.025	SOIL - 20/4/2018 SE178319.026	SOIL - 20/4/2018 SE178319.027
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	93	58	<45	<45
TRH C29-C36	mg/kg	45	62	92	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	32	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	32	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	120	120	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	160	150	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 24/4/2018

	BH1M 0.2-0.3 BH1M 0.6-0.7		BH2M 0.2-0.3	BH2M 0.5-0.6	BH3 0.2-0.3		
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.001	SE178319.002	SE178319.008	SE178319.009	SE178319.016
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.3	0.2	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	0.4	0.2	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	0.2	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.2	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.2	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.3</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.3	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>0.4</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	0.4	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.3</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.3	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	2.0	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	2.0	<0.8	<0.8

			BH4 0.2-0.3	BH5 0.3-0.4	BH6 0.3-0.4	BH6 0.6-0.7	BH7 0.2-0.3
			00"		0.011	0.01	0.01
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.017	SE178319.018	SE178319.019	SE178319.020	SE178319.021
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.7	0.2	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	0.7	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	0.5	0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	0.4	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.5	0.2	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.3	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	0.5	0.2	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.3	0.2	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.3	0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.6</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0.6	0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.7</td><td>0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.7	0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.7</td><td>0.3</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.7	0.3	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	4.5	1.4	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	4.5	1.4	<0.8	<0.8

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 24/4/2018 (continued)

			BH8M 0.5-0.6	BH9 0.2-0.3	BH9 0.9-1.0
			SOIL	SOIL	SOIL
			-	-	-
			20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.022	SE178319.025	SE178319.026
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.3	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.7	0.4	<0.1
Pyrene	mg/kg	0.1	0.7	0.4	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.4	0.3	<0.1
Chrysene	mg/kg	0.1	0.4	0.2	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.4	0.3	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	0.3	0.2	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.4	0.3	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.3	0.2	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.2	0.2	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.5</td><td>0.4</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	0.5	0.4	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.6</td><td>0.5</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	0.6	0.5	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.6</td><td>0.4</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.6	0.4	<0.2
Total PAH (18)	mg/kg	0.8	4.2	2.6	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	4.2	2.6	<0.8

OC Pesticides in Soil [AN420] Tested: 24/4/2018

			BH1M 0.2-0.3	BH2M 0.2-0.3	BH3 0.2-0.3	BH4 0.2-0.3	BH5 0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			- SUIL	- SOIL	- SOIL	SOIL	- SUIL
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.001	SE178319.008	SE178319.016	SE178319.017	SE178319.018
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 24/4/2018 (continued)

			BH6 0.3-0.4	BH7 0.2-0.3	BH8M 0.5-0.6	BH9 0.2-0.3
			SOIL	SOIL	SOIL	SOIL
			20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.019	SE178319.021	SE178319.022	SE178319.025
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1

OP Pesticides in Soil [AN420] Tested: 24/4/2018

			BH1M 0.2-0.3	BH2M 0.2-0.3	BH3 0.2-0.3	BH4 0.2-0.3	BH5 0.3-0.4
PARAMETER	UOM	LOR	SOIL - 20/4/2018 SE178319.001	SOIL - 20/4/2018 SE178319.008	SOIL - 20/4/2018 SE178319.016	SOIL - 20/4/2018 SE178319.017	SOIL - 20/4/2018 SE178319.018
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH6 0.3-0.4	BH7 0.2-0.3	BH8M 0.5-0.6	BH9 0.2-0.3
			SOIL	SOIL	SOIL	SOIL
			- 20/4/2018	- 20/4/2018	- 20/4/2018	- 20/4/2018
PARAMETER	UOM	LOR	SE178319.019	SE178319.021	SE178319.022	SE178319.025
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 24/4/2018

			BH1M 0.2-0.3	BH2M 0.2-0.3	BH3 0.2-0.3	BH4 0.2-0.3	BH5 0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.001	SE178319.008	SE178319.016	SE178319.017	SE178319.018
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH6 0.3-0.4	BH7 0.2-0.3	BH8M 0.5-0.6	BH9 0.2-0.3
PARAMETER	UOM	LOR	SOIL - 20/4/2018 SE178319.019	SOIL - 20/4/2018 SE178319.021	SOIL - 20/4/2018 SE178319.022	SOIL - 20/4/2018 SE178319.025
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1

ANALYTICAL RESULTS

SE178319 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 27/4/2018

			BH1M 0.2-0.3	BH1M 0.6-0.7	BH2M 0.2-0.3	BH2M 0.5-0.6	BH3 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.001	SE178319.002	SE178319.008	SE178319.009	SE178319.016
Arsenic, As	mg/kg	3	6	5	5	6	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	10	12	19	9.9	11
Copper, Cu	mg/kg	0.5	18	6.3	21	15	8.5
Lead, Pb	mg/kg	1	510	28	130	50	56
Nickel, Ni	mg/kg	0.5	5.0	2.2	15	2.5	2.5
Zinc, Zn	mg/kg	0.5	58	8.0	120	41	50

			BH4 0.2-0.3	BH5 0.3-0.4	BH6 0.3-0.4	BH6 0.6-0.7	BH7 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/4/2018	- 20/4/2018	- 20/4/2018	- 20/4/2018	- 20/4/2018
PARAMETER	UOM	LOR	SE178319.017	SE178319.018	SE178319.019	SE178319.020	SE178319.021
Arsenic, As	mg/kg	3	4	7	7	4	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	0.5
Chromium, Cr	mg/kg	0.3	9.1	19	14	9.0	27
Copper, Cu	mg/kg	0.5	14	27	26	8.3	26
Lead, Pb	mg/kg	1	77	120	160	29	230
Nickel, Ni	mg/kg	0.5	2.4	7.3	5.3	1.6	35
Zinc, Zn	mg/kg	0.5	130	130	140	9.7	190

			BH8M 0.5-0.6	BH9 0.2-0.3	BH9 0.9-1.0	QD1
			SOIL	SOIL	SOIL	SOIL
			20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.022	SE178319.025	SE178319.026	SE178319.027
Arsenic, As	mg/kg	3	6	7	8	5
Cadmium, Cd	mg/kg	0.3	0.4	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	13	19	19	18
Copper, Cu	mg/kg	0.5	28	32	12	25
Lead, Pb	mg/kg	1	250	160	21	260
Nickel, Ni	mg/kg	0.5	11	4.3	2.9	11
Zinc, Zn	mg/kg	0.5	350	200	12	220

Mercury in Soil [AN312] Tested: 27/4/2018

			BH1M 0.2-0.3	BH1M 0.6-0.7	BH2M 0.2-0.3	BH2M 0.5-0.6	BH3 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.001	SE178319.002	SE178319.008	SE178319.009	SE178319.016
Mercury	mg/kg	0.05	0.75	<0.05	0.20	0.30	0.07

			BH4 0.2-0.3	BH5 0.3-0.4	BH6 0.3-0.4	BH6 0.6-0.7	BH7 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.017	SE178319.018	SE178319.019	SE178319.020	SE178319.021
Mercury	mg/kg	0.05	0.12	0.32	0.50	<0.05	<0.05

			BH8M 0.5-0.6	BH9 0.2-0.3	BH9 0.9-1.0	QD1
			SOIL	SOIL	SOIL	SOIL
						-
			20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.022	SE178319.025	SE178319.026	SE178319.027
Mercury	mg/kg	0.05	0.18	0.14	<0.05	0.09

Moisture Content [AN002] Tested: 30/4/2018

			BH1M 0.2-0.3	BH1M 0.6-0.7	BH2M 0.2-0.3	BH2M 0.5-0.6	BH3 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.001	SE178319.002	SE178319.008	SE178319.009	SE178319.016
% Moisture	%w/w	0.5	16	13	16	17	14

			BH4 0.2-0.3	BH5 0.3-0.4	BH6 0.3-0.4	BH6 0.6-0.7	BH7 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.017	SE178319.018	SE178319.019	SE178319.020	SE178319.021
% Moisture	%w/w	0.5	10	21	17	15	15

			BH8M 0.5-0.6	BH9 0.2-0.3	BH9 0.9-1.0	QD1	TB1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.022	SE178319.025	SE178319.026	SE178319.027	SE178319.030
% Moisture	%w/w	0.5	25	17	20	19	<0.5

Fibre Identification in soil [AN602] Tested: 30/4/2018

			BH1M 0.2-0.3	BH2M 0.2-0.3	BH3 0.2-0.3	BH4 0.2-0.3	BH5 0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.001	SE178319.008	SE178319.016	SE178319.017	SE178319.018
Asbestos Detected	No unit	-	No	Yes	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	>0.01	<0.01	<0.01	<0.01

			BH6 0.3-0.4	BH7 0.2-0.3	BH8M 0.5-0.6	BH9 0.2-0.3
			SOIL	SOIL	SOIL	SOIL
			20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.019	SE178319.021	SE178319.022	SE178319.025
Asbestos Detected	No unit	-	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	>0.01	<0.01

Sample Subcontracted [] Tested: 1/5/2018

			BH1M 0.6-0.7	BH1M 1.1-1.2	BH1M 2.1-2.2	BH1M 3.0-3.1	BH1M 3.5-3.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.002	SE178319.003	SE178319.004	SE178319.005	SE178319.006
Sample Subcontracted*	No unit	-	Subcontracted	Subcontracted	Subcontracted	Subcontracted	Subcontracted

			BH1M 4.4-4.5	BH2M 0.9-1.0	BH2M 1.4-1.5	BH2M 2.4-2.5	BH2M 3.5-3.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/4/2018	20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.007	SE178319.010	SE178319.011	SE178319.012	SE178319.013
Sample Subcontracted*	No unit	-	Subcontracted	Subcontracted	Subcontracted	Subcontracted	Subcontracted

			BH2M 4.0-4.1	BH2M 4.5-4.6	BH8M 1.9-2.0	BH8M 2.4-2.5
			SOIL	SOIL	SOIL	SOIL
						-
			20/4/2018	20/4/2018	20/4/2018	20/4/2018
PARAMETER	UOM	LOR	SE178319.014	SE178319.015	SE178319.023	SE178319.024
Sample Subcontracted*	No unit	-	Subcontracted	Subcontracted	Subcontracted	Subcontracted

VOCs in Water [AN433] Tested: 24/4/2018

			QR1
			WATER
			- 20/4/2018
PARAMETER	UOM	LOR	SE178319.028
Benzene	µg/L	0.5	<0.5
Toluene	μg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 24/4/2018

			QR1
			WATER
PARAMETER	UOM	LOR	20/4/2018
PARAMETER	UOM	LOR	SE178319.028
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50

ANALYTICAL RESULTS

SE178319 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 26/4/2018

			QR1
PARAMETER	UOM	LOR	WATER - 20/4/2018 SE178319.028
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C36	µg/L	450	<450
TRH C10-C40	µg/L	650	<650
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60

ANALYTICAL RESULTS

SE178319 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 26/4/2018

			QR1
			WATER
			- 20/4/2018
PARAMETER	UOM	LOR	SE178319.028
Arsenic, As	µg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	μg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 26/4/2018

			QR1
			WATER
			20/4/2018
PARAMETER	UOM	LOR	SE178319.028
Mercury	mg/L	0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602 The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Sharon Li	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sharon.li@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23796 - 26 Elizabeth St, Liverpool NSW	SGS Reference	SE178319 R0
Order Number	E23796	Date Received	23 Apr 2018
Samples	9	Date Reported	01 May 2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample # 8 : Asbestos found in approx 40x15x3mm cement sheet fragments.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

kinty

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Kamrul Ahsan Senior Chemist

Australia

Australia

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au Member of the SGS Group

Fibre Identifica	tion in soil				Method AN602		
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w	
SE178319.001	BH1M 0.2-0.3	Soil	241g Clay,Sand,Soil, Rocks	20 Apr 2018	No Asbestos Found	<0.01	
SE178319.008	BH2M 0.2-0.3	Soil	225g Clay,Sand,Soil, Rocks	20 Apr 2018	Chrysotile & Crocidolite Asbestos Found	>0.01	
SE178319.016	BH3 0.2-0.3	Soil	209g Clay,Sand,Soil, Rocks	20 Apr 2018	No Asbestos Found	<0.01	
SE178319.017	BH4 0.2-0.3	Soil	235g Clay,Sand,Soil, Rocks	20 Apr 2018	No Asbestos Found	<0.01	
SE178319.018	BH5 0.3-0.4	Soil	267g Clay,Sand,Soil, Rocks	20 Apr 2018	No Asbestos Found	<0.01	
SE178319.019	BH6 0.3-0.4	Soil	159g Clay,Sand,Soil, Rocks	20 Apr 2018	No Asbestos Found	<0.01	
SE178319.021	BH7 0.2-0.3	Soil	278g Clay,Sand,Soil, Rocks	20 Apr 2018	No Asbestos Found	<0.01	
SE178319.022	BH8M 0.5-0.6	Soil	387g Clay,Sand,Soil, Rocks	20 Apr 2018	No Asbestos Found Organic Fibres Detected	>0.01	
SE178319.025	BH9 0.2-0.3	Soil	167g Clay,Sand,Soil, Rocks	20 Apr 2018	No Asbestos Found	<0.01	

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR --Listed. Not Required Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

FOOTNOTES -

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

LIENT DETAILS		LABORATORY DETAI	L3
Contact	Sharon Li	Manager	Jon Dicker
Client	EI AUSTRALIA	Laboratory	SGS Cairns Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 2, 58 Comport St Portsmith QLD 4870
Telephone	61 2 95160722	Telephone	+61 07 4035 5111
Facsimile	02 8594 0499	Facsimile	+61 07 4035 5122
Email	au.environmental.sydney@sgs.com	Email	AU.Environmental.Cairns@sgs.com
Project	E23796-26 Elizabeth St Liverpool NSW	SGS Reference	CE133191 R0
Order Number	SE178319	Date Received	26 Apr 2018
Samples	14	Date Reported	01 May 2018

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(3146).

SIGNATORIES _____

Anthony Nilsson Operations Manager

Jon Dicker Manager Northern QLD

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 2 58 Comport St

St Portsmith QLD 4870

Australia t +61 7 4035 5111 f +61 7 4035 5122

www.sgs.com.au

CE133191 R0

	Sa	nple Number ample Matrix Sample Date ample Name	soil 20 Apr 2018	CE133191.002 Soil 20 Apr 2018 BH1M 1.1-1.2	CE133191.003 Soil 20 Apr 2018 BH1M 2.1-2.2	CE133191.004 Soil 20 Apr 2018 BH1M 3.0-3.1
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/4/2018						
% Moisture	%w/w	0.5	17	20	20	13

TAA (Titratable Actual Acidity) Method: AN219 Tested: 30/4/2018

pH KCI	pH Units	-	6.6	5.7	4.9	6.0
Titratable Actual Acidity	kg H2SO4/T	0.25	<0.25	0.61	0.86	0.31
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	<5	12	17	6
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	<0.01	0.02	0.03	0.01
Sulphur (SKCI)	%w/w	0.005	<0.005	<0.005	0.012	0.009
Calcium (CaKCI)	%w/w	0.005	0.14	0.11	0.018	0.013
Magnesium (MgKCI)	%w/w	0.005	0.020	0.088	0.059	0.082

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 30/4/2018

Peroxide pH (pH Ox)	pH Units	-	7.5	6.0	5.5	6.5
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	0.49	2.0	<0.25
TPA as moles H+/tonne	moles H+/T	5	<5	10	40	<5
TPA as S % W/W	%w/w S	0.01	<0.01	0.02	0.06	<0.01
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	<5	22	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	1.1	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	<0.01	0.04	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	0.40	<0.01	<0.01	0.25
ANCE as moles H+/tonne	moles H+/T	5	80	<5	<5	50
ANCE as S % W/W	%w/w S	0.01	0.13	<0.01	<0.01	0.08
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.006	0.018	0.024	<0.005
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	<5	11	15	<5
Sulphur (Sp)	%w/w	0.005	0.007	0.021	0.036	0.014
Calcium (Cap)	%w/w	0.005	0.17	0.12	0.038	0.015
Reacted Calcium (CaA)	%w/w	0.005	0.031	0.007	0.020	<0.005
Reacted Calcium (CaA)	moles H+/T	5	16	<5	10	<5
Magnesium (Mgp)	%w/w	0.005	0.023	0.090	0.12	0.083
Reacted Magnesium (MgA)	%w/w	0.005	<0.005	<0.005	0.060	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	<5	<5	50	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-	-	-

s-Net Acidity	%w/w S	0.01	<0.01	0.04	0.05	<0.01
a-Net Acidity	moles H+/T	5	<5	24	32	<5
Liming Rate	kg CaCO3/T	0.1	<0.1	1.8	2.4	<0.1
Verification s-Net Acidity	%w/w S	-20	-0.08	0.01	0.01	-0.05
a-Net Acidity without ANCE	moles H+/T	5	<5	24	32	9
Liming Rate without ANCE	kg CaCO3/T	0.1	<0.1	1.8	2.4	NA

CE133191 R0

	Sa	nple Number ample Matrix Sample Date ample Name	Soil 20 Apr 2018	CE133191.006 Soil 20 Apr 2018 BH1M 4.4-4.5	CE133191.007 Soil 20 Apr 2018 BH2M 0.9-1.0	CE133191.008 Soil 20 Apr 2018 BH2M 1.4-1.5
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/4/2018						
% Moisture	%w/w	0.5	16	9.3	19	17

TAA (Titratable Actual Acidity) Method: AN219 Tested: 30/4/2018

pH KCI	pH Units	-	6.0	6.6	6.6	6.7
Titratable Actual Acidity	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Sulphur (SKCI)	%w/w	0.005	0.010	0.005	0.006	<0.005
Calcium (CaKCl)	%w/w	0.005	0.010	0.014	0.17	0.10
Magnesium (MgKCl)	%w/w	0.005	0.086	0.054	0.073	0.052

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 30/4/2018

Peroxide pH (pH Ox)	pH Units	-	6.9	8.7	7.1	6.9
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
TPA as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
TPA as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	0.25	0.25	0.45	0.30
ANCE as moles H+/tonne	moles H+/T	5	50	50	90	60
ANCE as S % W/W	%w/w S	0.01	0.08	0.08	0.14	0.10
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	<0.005	<0.005	0.015	<0.005
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	<5	<5	9	<5
Sulphur (Sp)	%w/w	0.005	0.013	0.005	0.021	<0.005
Calcium (Cap)	%w/w	0.005	0.012	0.020	0.20	0.11
Reacted Calcium (CaA)	%w/w	0.005	<0.005	0.006	0.021	0.006
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	10	<5
Magnesium (Mgp)	%w/w	0.005	0.091	0.059	0.083	0.059
Reacted Magnesium (MgA)	%w/w	0.005	0.005	<0.005	0.010	0.007
Reacted Magnesium (MgA)	moles H+/T	5	<5	<5	8	6
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-	-	-

s-Net Acidity	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
a-Net Acidity	moles H+/T	5	<5	<5	<5	<5
Liming Rate	kg CaCO3/T	0.1	<0.1	<0.1	<0.1	<0.1
Verification s-Net Acidity	%w/w S	-20	-0.05	-0.05	-0.09	-0.06
a-Net Acidity without ANCE	moles H+/T	5	7	<5	9	<5
Liming Rate without ANCE	kg CaCO3/T	0.1	NA	<0.1	NA	<0.1

CE133191 R0

	Sa	pple Number Imple Matrix Sample Date Ample Name	Soil 20 Apr 2018	CE133191.010 Soil 20 Apr 2018 BH2M 3.5-3.6	CE133191.011 Soil 20 Apr 2018 BH2M 4.0-4.1	CE133191.012 Soil 20 Apr 2018 BH2M 4.5-4.6
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/4/2018						
% Moisture	%w/w	0.5	14	15	16	14

TAA (Titratable Actual Acidity) Method: AN219 Tested: 30/4/2018

рН КСІ	pH Units	-	7.0	6.6	6.5	6.7
Titratable Actual Acidity	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Sulphur (SKCI)	%w/w	0.005	<0.005	<0.005	<0.005	0.006
Calcium (CaKCl)	%w/w	0.005	0.11	0.011	0.009	0.018
Magnesium (MgKCI)	%w/w	0.005	0.073	0.067	0.063	0.059

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 30/4/2018

Peroxide pH (pH Ox)	pH Units	-	7.0	6.7	6.6	6.7
TPA as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
TPA as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
TPA as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	0.40	0.25	0.25	0.25
ANCE as moles H+/tonne	moles H+/T	5	80	50	50	50
ANCE as S % W/W	%w/w S	0.01	0.13	0.08	0.08	0.08
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.006	<0.005	<0.005	<0.005
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Sulphur (Sp)	%w/w	0.005	0.010	0.007	0.005	0.010
Calcium (Cap)	%w/w	0.005	0.12	0.012	0.010	0.021
Reacted Calcium (CaA)	%w/w	0.005	0.019	<0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	10	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.082	0.071	0.069	0.070
Reacted Magnesium (MgA)	%w/w	0.005	0.010	<0.005	0.007	0.010
Reacted Magnesium (MgA)	moles H+/T	5	8	<5	5	8
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-	-	-

s-Net Acidity	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
a-Net Acidity	moles H+/T	5	<5	<5	<5	<5
Liming Rate	kg CaCO3/T	0.1	<0.1	<0.1	<0.1	<0.1
Verification s-Net Acidity	%w/w S	-20	-0.08	-0.05	-0.05	-0.05
a-Net Acidity without ANCE	moles H+/T	5	<5	<5	<5	<5
Liming Rate without ANCE	kg CaCO3/T	0.1	<0.1	<0.1	<0.1	<0.1

	Sa	ple Numbe Imple Matri Sample Dat ample Nam	x Soil e 20 Apr 2018	CE133191.014 Soil 20 Apr 2018 BH8M 2.4-2.5
Parameter	Units	LOR		
Moisture Content Method: AN002 Tested: 26/4/2018				
% Moisture	%w/w	0.5	18	17

TAA (Titratable Actual Acidity) Method: AN219 Tested: 30/4/2018

рН КСІ	pH Units	-	4.5	4.5
Titratable Actual Acidity	kg H2SO4/T	0.25	2.3	2.5
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	47	50
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.08	0.08
Sulphur (SKCI)	%w/w	0.005	0.037	0.048
Calcium (CaKCI)	%w/w	0.005	0.026	0.021
Magnesium (MgKCl)	%w/w	0.005	0.099	0.11

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 30/4/2018

Peroxide pH (pH Ox)	pH Units	-	5.0	5.0
TPA as kg H₂SO₄/tonne	kg H2SO4/T	0.25	2.9	3.3
TPA as moles H+/tonne	moles H+/T	5	60	67
TPA as S % W/W	%w/w S	0.01	0.10	0.11
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	12	17
Titratable Sulfidic Acidity as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	0.61	0.86
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	0.02	0.03
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	0.010	0.017
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	6	10
Sulphur (Sp)	%w/w	0.005	0.047	0.065
Calcium (Cap)	%w/w	0.005	0.029	0.025
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.10	0.11
Reacted Magnesium (MgA)	%w/w	0.005	<0.005	0.008
Reacted Magnesium (MgA)	moles H+/T	5	<5	6
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	-	-
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	-	-

s-Net Acidity	%w/w S	0.01	0.09	0.10
a-Net Acidity	moles H+/T	5	53	60
Liming Rate	kg CaCO3/T	0.1	4.0	4.5
Verification s-Net Acidity	%w/w S	-20	0.00	0.01
a-Net Acidity without ANCE	moles H+/T	5	53	60
Liming Rate without ANCE	kg CaCO3/T	0.1	4.0	4.5

QC SUMMARY

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

TAA (Titratable Actual Acidity) Method: ME-(AU)-[ENV]AN219

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
pH KCI	LB055913	pH Units	-	5.8	0 - 2%	101%
Titratable Actual Acidity	LB055913	kg H2SO4/T	0.25	<0.25	0%	NA
Titratable Actual Acidity (TAA) moles H+/tonne	LB055913	moles H+/T	5	<5	0%	92%
Titratable Actual Acidity (TAA) S%w/w	LB055913	%w/w S	0.01	<0.01	0%	92%
Sulphur (SKCI)	LB055913	%w/w	0.005	<0.005	0%	96%
Calcium (CaKCl)	LB055913	%w/w	0.005	<0.005	2%	92%
Magnesium (MgKCI)	LB055913	%w/w	0.005	<0.005	1 - 2%	87%

TPA (Titratable Peroxide Acidity) Method: ME-(AU)-[ENV]AN218

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Peroxide pH (pH Ox)	LB055910	pH Units	-	6.1	0 - 10%	105%
TPA as kg H₂SO₄/tonne	LB055910	kg H2SO4/T	0.25	<0.25	0%	99%
TPA as moles H+/tonne	LB055910	moles H+/T	5	<5	0%	99%
TPA as S % W/W	LB055910	%w/w S	0.01	<0.01	0%	99%
ANCE as % CaCO ₃	LB055910	% CaCO3	0.01	<0.01	0 - 13%	
ANCE as moles H+/tonne	LB055910	moles H+/T	5	<5	0 - 13%	
ANCE as S % W/W	LB055910	%w/w S	0.01	<0.01	0 - 13%	
Sulphur (Sp)	LB055910	%w/w	0.005	<0.005	3 - 6%	86%
Calcium (Cap)	LB055910	%w/w	0.005	<0.005	2 - 3%	108%
Magnesium (Mgp)	LB055910	%w/w	0.005	<0.005	1 - 4%	91%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN218	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	SPOCAS Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES _

IS	Insufficient sample for analysis.	LOR	Limit of Reporting
LNR	Sample listed, but not received.	↑↓	Raised or Lowered Limit of Reporting
*	NATA accreditation does not cover the	QFH	QC result is above the upper tolerance
	performance of this service.	QFL	QC result is below the lower tolerance
**	Indicative data, theoretical holding time exceeded.	-	The sample was not analysed for this analyte
		NVL	Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Sharon Li	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sharon.li@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23796 - 26 Elizabeth St, Liverpool NSW	SGS Reference	SE178657 R0
Order Number	E23796	Date Received	3/5/2018
Samples	7	Date Reported	9/5/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar Beniameen Chemist

kinty

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Dong Liang

Metals/Inorganics Team Leader

Alexandria NSW 2015 Alexandria NSW 2015

015 Australia 015 Australia

Kamrul Ahsan

Senior Chemist

stralia t +61 2 8594 0400 stralia f +61 2 8594 0499

www.sgs.com.au

ANALYTICAL RESULTS

SE178657 R0

VOCs in Water [AN433] Tested: 7/5/2018

			BH1M	BH2M	BH8M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
			-	-	-	-	-
PARAMETER	UOM	LOR	2/5/2018 SE178657.001	2/5/2018 SE178657.002	2/5/2018 SE178657.003	2/5/2018 SE178657.004	2/5/2018 SE178657.005
Benzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	0.8	0.9	0.6	<0.5
m/p-xylene	µg/L	1	<1	<1	<1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3	<3	<3	<3
Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5	<5	-	-
Chloromethane	µg/L	5	<5	<5	<5	-	-
Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	<0.3	-	-
Bromomethane	µg/L	10	<10	<10	<10	-	-
Chloroethane	µg/L	5	<5	<5	<5	-	-
Trichlorofluoromethane	µg/L	1	<1	<1	<1	-	-
Acetone (2-propanone)	µg/L	10	<10	<10	<10	-	-
lodomethane	µg/L	5	<5	<5	<5	-	-
1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Acrylonitrile	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	<5	-	-
Allyl chloride	µg/L	2	<2	<2	<2	-	-
Carbon disulfide	µg/L	2	<2	<2	<2	-	-
trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	<2	-	-
1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Vinyl acetate	µg/L	10	<10	<10	<10	-	-
MEK (2-butanone)	µg/L	10	<10	<10	<10	-	-
cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromochloromethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Chloroform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-nitropropane	µg/L	100	<100	<100	<100	-	-
Bromodichloromethane (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
MIBK (4-methyl-2-pentanone)	µg/L	5	<5	<5	<5	-	-
cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromochloromethane (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-hexanone (MBK)	µg/L	5	<5	<5	<5	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Chlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromoform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
cis-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	-	-
Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	-	-

SE178657 R0

VOCs in Water [AN433] Tested: 7/5/2018 (continued)

			BH1M	BH2M	BH8M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
			- 2/5/2018	- 2/5/2018	- 2/5/2018	- 2/5/2018	- 2/5/2018
PARAMETER	UOM	LOR	SE178657.001	SE178657.002	SE178657.003	SE178657.004	SE178657.005
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-propylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	-	-
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Total VOC	µg/L	10	<10	<10	<10	-	-

ANALYTICAL RESULTS

SE178657 R0

VOCs in Water [AN433] Tested: 7/5/2018 (continued)

Dibromochloromethane (THM) µg/L 0.5 - - 2-hexanone (MBK) µg/L 5 - - 1,2-dibromoethane (EDB) µg/L 0.5 - - Tetrachloroethane (Perchloroethylene,PCE) µg/L 0.5 - - 1,1,2-tetrachloroethane µg/L 0.5 - - Chlorobenzene µg/L 0.5 - - Bromoform (THM) µg/L 0.5 - - cis-1,4-dichloro-2-butene µg/L 1 - -				GWTS1	GWTB1
AAAUTERUPLosSectraer 300PERAPER 7000 0UP0.5SET 7000 0TelersUP0.5SET 7000 0TelersUP0.5SET 7000 0TelersUP0.5SET 7000 0UP AL0.5SET 7000 0SET 7000 0UP AL				WATER	WATER
PARAMERISUPA				-	-
ParameµA0.64(PSN)0.40.5TokinoµA0.64(PSN)0.63TokinoµA0.64(PSN)0.64.5rip-yoinoµA0.64(PAN)0.64.5TokinoµA0.64(PAN)0.64.5TokinoµA0.64(PAN)0.64.5TokinoµA0.64(PAN)0.64.5TokinoµA0.64(PAN)0.64.5TokinoµA0.64(PAN)0.64.5Delocodizionantare (FC-12)µA0.64(PAN)0.64.5ConcorrelariaµA0.64(PAN)0.64.5ConcorrelariaµA0.64(PAN)0.64.5ConcorrelariaµA0.64(PAN)0.64.5ConcorrelariaµA0.64(PAN)0.64.5ConcorrelariaµA0.64(PAN)0.64.5ConcorrelariaµA0.64(PAN)0.64.5ConcorrelariaµA0.64(PAN)(PAN)ConcorrelariaµA0.64(PAN)(PAN)ConcorrelariaµA0.64(PAN)(PAN)ConcorrelariaµA0.64(PAN)(PAN)ConcorrelariaµA0.64(PAN)(PAN)ConcorrelariaµA0.64(PAN)(PAN)ConcorrelariaµA0.64(PAN)(PAN)ConcorrelariaµA0.64(PAN)(PAN)ConcorrelariaµA0.64(PAN)(PAN)<					
Taluane pupl. 0.5. [0Ph] 0.45. Emplorations upl. 0.5 [0Ph] 0.5. Implorations upl. 0.5. [0Ph] 0.5. Tala Xylena upl. 0.5. [0Ph] 0.5. Tala Xylena upl. 0.5. [0Ph] 0.5. Tala Xylena upl. 0.5. 0.4. 0.5. Debtoodfuscomethme (FC-12) upl. 0.5. 0.1. 0.1. Debtoodfuscomethme (FC-12) upl. 0.1. 0.1. 0.1. Choomethane upl. 0.1. 0.1. 0.1. Choomethane upl. 0.1. 0.1. 0.1. Choomethane upl. 0.5. 0.1. 0.1. Tricherbouromethane upl. 0.5. 0.1. 0.1. Indedhore (horperation) upl. 0.5. 0.1. 0.1. Indedhore (horperation) upl. 0.5. 0.1. 0.1. Indedhore (horperation) upl.					
Ethybenzene ppt 0.5 (B55) 4.5 nip-yeine 00L 1 (B75) <1					
mjr ydeineygl1[985)1orykereypl0.5[00%]0.50.10.5Tork Mydresypl0.50.00.50.0Tork Mydresypl0.50.00.0Tork Mydresypl0.50.00.0Dehoendinarenetane (CFC-17)ypl0.10.00.0Unit claise (Chroachane)ypl0.10.00.0Bornomethaneypl0.10.00.00.0Chroachaneypl0.10.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneypl0.00.00.00.0Chroachaneyp					
owner pd 0.5 (091) 4.05 Total Xyenes upd 1.5 - 4.5 Total Xyenes upd 0.5 - 4.05 Naphthelene upd 0.5 - 4.05 Naphthelene upd 0.5 - - Koncomsham upd 0.3 - - Koncomsham upd 0.5 - - <td></td> <td></td> <td></td> <td></td> <td></td>					
Total bTEXµpL1.51.1Total bTEXµpL0.5					
Total BTEXµpL3I3NaphthaneµpL0.500.5NaphthaneµpL0.500.5Choorenthane (CFC-12)µpL0.300.1ChoorenthaneµpL0.300.1EmonorenthaneµpL0.30.10.1ChoorenthaneµpL0.500.1ChoorenthaneµpL0.500.1ChoorenthaneµpL0.600.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1ChoorenthaneµpL0.50.10.1Choorenthane<					
Naphthelem Join Constraints Binkhotkinsen Jpd. 5 - Chorsonshame Jpd. 5 - Viny chords (Chorsenhame) Jpd. 0.3 - Bromonshame Jpd. 0.1 - Chorsenhame Jpd. 10 - Chorsenhame Jpd. 10 - - Chorsenhame Jpd. 10 - - - Chorsenhame Jpd. 10 - - - Chorsenhame Jpd. 0.5 - - - Li dichorsenhame Jpd. 0.5 - - - Chorsenhame Jpd. 0.5 - - - Action (Chorsenhame Jpd. 0.5 - - - Chorsenhame Jpd. 0.5 - - - Action (Chorsenhame Jpd. 0.5 - - - Mise Chotsenhame <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Dubicondituosmethame CFC-12) ppl. 5 - Chirorenthame ppl. 5 - - Univol chirolis (Chrostenon) ppl. 0.5 - - Bromomethame ppl. 10 - - Chrostenhame ppl. 11 - - Chrostenhame ppl. 5 - - Chrostenhame ppl. 5 - - Colorandhame ppl. 5 - - Colorandhame ppl. 5 - - Arybrinhe ppl. 5 - - - Chrobit dinulide ppl. 2 - - - Micholand ppl. 0.5 - -					-
Duromethane ppL 5 Vinj dickotethen) ppL 0.3 Sommershare ppL 0.3 Charoethane ppL 0.1 Charoethane ppL 1 Acotex (2-propanole) ppL 0.5 Indiconstrate ppL 0.5 Acotex (2-propanole) ppL 0.5 Charoethane ppL 0.5 Charoethane ppL 0.5 Charoethane ppL 0.5 Charoethane ppL 0.5 Charoethane ppL 0.5 Charoethane ppL 0.5 Charoethane ppL					
Viny choride (Chioceshene) µµL 0.3 Bromenshane µµL 10 Choreshane µµL 1 Trichtordnormshane µµL 1 Choreshane µµL 1 Identified µµL 10 Identified µµL 0.5 Identified µµL 0.5 Acytonifie µµL 0.5 Acytonifie µµL 2 Acytonifie µµL 2 Acytonifie µµL 1.5 BE(MetryAsthuffether µµL 0.5 Ital-choreshene µµL 0.5					
BronomethaneµpL10.ChorebraneµpL5ChorebraneµpL10Aestone (2-gropanone)µpL10LodomethaneµpL05LodomethaneµpL0.5LodomethaneµpL0.5UpdotterµpL0.5Dichoromethane (Methylene chloride)µpL2Nyl visitorideµpL0.5Dichoromethane (Methylene chloride)µpL0.5Myl visitorideµpL0.5Dichoromethane (Methylene chloride)µpL0.5Myl visitorideµpL0.5 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Chlorsehane µpL 5 Trichiorofunormihane µpL 10 Acatore (2 propanone) µpL 10 Ottomethane µpL 5 Anytontile µpL 0.5 Dickromethane (Methylene choride) µpL 0.5 Anytontile µpL 0.5 Dickromethane (Methylene choride) µpL 0.5 Dickromethane (Methylene choride) µpL 10 Dickromethane (Methylene choride) µpL 10 Dickromethane (Methylene choride) µpL 10 MISE (Methyl-ser-budy ethen) µpL 0.5 Unplacetane µpL 0.5 Unplacetane µpL 0.5 Dickronethane µpL 0.5					
Trichlordhuromathane µpL 1 . Acattore (2, popanone) µpL 10 . Iodomathane µpL 5 . . Icidemathane µpL 0.5 . . Anytoninfie µpL 0.5 . . Anytoninfie µpL 2 . . Anytoninfie µpL 10 . . Anytoninfie µpL 10 . . Anytoninfie µpL 0.5 . . Trans 1.2.dichtorophane µpL 0.5 . . Trichinorehane µpL 0.5 . . . Trichinorehane µpL 0.5 . . . Trichinorehane µpL 0.5 . <td></td> <td></td> <td></td> <td></td> <td></td>					
Action (2-propanne) µg/L 10 - Iodomethane µg/L 5 - - Indersethane µg/L 0.5 - - Ackpointrie µg/L 0.5 - - Dichicomethane (Metrylene chloride) µg/L 2 - - Ally chloride µg/L 0.5 - - Carbon disulfide µg/L 0.5 - - MEE (Metryl-kert-bucyl ether) µg/L 0.5 - - Viryl acetata µg/L 10 - - - Viryl acetata µg/L 0.5 - - - Viryl acetata µg/L 0.5 - - - Carbidrorethene µg/L 0.5 - - - Carbidrorethane µg/L 0.5 - - - Carbidrorethane µg/L 0.5 - - - 1.1-dichlorethane µg/L					
Indomethane µµL S - 1.1-dichicrosthere µµL 0.5 - - Anytonitrie µµL 2 - - Anytonitrie µµL 2 - - Anytonitrie µµL 2 - - Anytonitrie µµL 10 - - Carbon disulfies µµL 10 - - MRE (Methysher-buly ather) µµL 0.5 - - Viryt acetate µµL 0.5 - - - Bromothoremethane µµL 0.5 - - - Carbon (triM) µµL 0.5 - - - 1.1-dichicrosthere µµL 0.5 - - - 1.1-dichicro					
1.1-dichtoreethene µµL 0.5 - Acylonitile µµL 0.5 - Dichtormethane (Methylene chloride) µµL 5 - Acylonitide µµL 2 - - Carbon disulfide µµL 2 - - Carbon disulfide µµL 2 - - MBE (Methyl-ser-bulyl ether) µµL 10 - - 1.1-dichtoreethene µµL 10 - - 1.1-dichtoreethene µµL 10 - - 1.1-dichtoreethene µµL 0.5 - - 1.1-dichtoreethene µµL 0.5 - - 1.1-dichtoreethane µµL					
Aryolntine µµL 0.5 - Dichtormethame (Methylene chloride) µµL 5 - Ally chloride µµL 2 - Carbon disulfide µµL 2 - Carbon disulfide µµL 0.5 - trans-1.2.dichtoroethane µµL 0.5 - MIEE (Methyl-sent-buyl ether) µµL 0.5 - Vijk acetate µµL 0.5 - - MEK (2-bulanone) µµL 0.5 - - Somochoromethane µµL 0.5 - - Broncholoromethane µµL 0.5 - - 1.2-dichloropropane µµL 0.5 - - 1.1-dichloropropane µµL 0.5 - -					
Dicknomethane (Methylene chloride) µgL 5 - Ally chloride µgL 2 - - Ally chloride µgL 2 - - Ally chloride µgL 2 - - Intern-12-dicklorethene µgL 0.5 - - MBE (Methyl-tert-buly ether) µgL 0.5 - - 1.1-dicklorethene µgL 0.5 - - - KK (2-bulance) µgL 0.5 - - - Bromachkare µgL 0.5 - - - Scholkromethane µgL 0.5 - - - 1.2-dichloropropare µgL 0.5 - - - 1.4-dichloropropare µgL 0.5 - - - 1.1-dichloropropare µgL 0.5 - - - 1.1-dichloropropare µgL 0.5 - - - 1.1					
Ally chorideµgL2.Carbon disulfideµgL2Carbon disulfideµgL0.5Itams-12-dichloroetheneµgL0.5MBE (MethyLser-Lulyi ether)µgL0.51.1-dichloroetheneµgL0.5MIY acetateµgL0.5MEK (Chatanone)µgL0.5GenochloromethaneµgL0.5Chloroform (THM)µgL0.52.2-dichloroethaneµgL0.51.2-dichlorophaneµgL0.51.1-dichlorophaneµgL0.51.1-dichlorophaneµgL0.51.1-dichlorophaneµgL0.51.1-dichlorophaneµgL0.51.1-dichlorophaneµgL0.51.1-dichlorophaneµgL0.51.1-dichlorophaneµgL0.51.1-dichlorophaneµgL0.51.1-dichlorophaneµgL0.51.1-dichlorophaneµgL0.51.1-dichlorophaneµgL0.51.1-dichlorophaneµgL0.5 <td></td> <td></td> <td></td> <td></td> <td></td>					
J. J. J. Carbon disulfide µgL 2 - - trans-1.2-dichiorecthene µgL 0.5 - - MBE (Mutpl-turt-budy (then) µgL 0.5 - - Viryl acetate µgL 0.0 - - MEK (2-butanone) µgL 0.5 - - MEK (2-butanone) µgL 0.5 - - MEK (2-butanone) µgL 0.5 - - Diardom (THM) µgL 0.5 - - - Carbon tarschiorosthane µgL 0.5 - - - 1.1.4-trickhorosthane µgL 0.5					
No No No MBE (Methy-tert-buty ether) µgL 0.5 - MBE (Methy-tert-buty ether) µgL 2 - MIDE (Methy-tert-buty ether) µgL 0.5 - Viny acetate µgL 0.5 - - KK (2-butanone) µgL 0.5 - - Bromochloromethane µgL 0.5 - - Chiordom (THM) µgL 0.5 - - 1.1.4/tichloroethane µgL 0.5 - - 1.1.4/tichloropropane µgL 0.5 - - 1.1.4/tichloropropane µgL 0.5 - - 1.1.4/tichloropropane µgL 0.5 - - Dibromomethane µgL 0.5 - - - 1.1.4/tichloropropane µgL 0.5 - - - Dibromomethane µgL 0.5 - - - Dibromomethane µgL					
MBE (Methy-Letr-butyl ether) pgL 2 - 1.1-dichlorcethane µgL 0.5 - - Viryl acetate µgL 10 - - MEK (2-butanone) µgL 0.5 - - Bromachloromethane µgL 0.5 - - Chlordorom (THM) µgL 0.5 - - 2.2-dichloropropane µgL 0.5 - - 1.1-trichloroethane µgL 0.5 - - 1.1-trichloropropane µgL 0.5 - - 1.1					
1.4-dohoroethane µg/L 0.5 - Vinyl acatate µg/L 10 - MEK (2-bulanone) µg/L 10 - cis-1.2-dichloroethene µg/L 0.5 - Bromochloromethane µg/L 0.5 - Chlorofern (THM) µg/L 0.5 - 2.2-dichloroethane µg/L 0.5 - 1.1-dichloroethane µg/L 0.5 - 1.1-dichloropopene µg/L 0.5 - Cabon etrachloride µg/L 0.5 - Dibromomethane µg/L 0.5 - - 1.1-dichloropopene µg/L 0.5 - - Dibromomethane µg/L 0.5 - - - Dibromomethane (Trikhoroethytene,TCE) µg/L 0.5 - - - Dibromomethane (THM) µg/L 0.5 - - - - L2-dichloropopane µg/L 0.5 - - - - L3-dichloropopane µg/L 0.5					
Nurk Nurk <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td></th<>				-	-
MK (2-butanone) µg/L 10 - cis-1,2-dichloroethane µg/L 0.5 - - Bromchloromethane µg/L 0.5 - - Bromchloromethane µg/L 0.5 - - 2,2-dichloropropane µg/L 0.5 - - 2,2-dichloropropane µg/L 0.5 - - 1,1-trichloropropane µg/L 0.5 - - 1,1-dichloropropane µg/L 0.5 - - 1,2-dichloropropane µg/L 0.5 - -				-	
i.i.2.dichlorozethene µg/L 0.5 . Bromochloromethane µg/L 0.5 . . Bromochloromethane µg/L 0.5 . . 2.2.dichlorozethane µg/L 0.5 . . 1.2.dichlorozethane µg/L 0.5 . . 1.1.dichlorozethane µg/L 0.5 . . . 1.1.dichlorozethane µg/L 0.5 . . . Carbon tetrachloride µg/L 0.5 . . . Dibromomethane µg/L 0.5 1.2.dichlorozethane (Trichlorosethylene,TCE) µg/L 0.5 Bromochlorozethane (Trichlorosethylene,TCE) µg/L 0.5 . </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Bromochloromethane µg/L 0.5 . Chioroform (THM) µg/L 0.5 . . 2.2-dichloropropane µg/L 0.5 . . 1.2-dichloroptropane µg/L 0.5 . . 1.2-dichloroptropane µg/L 0.5 . . 1.1-dichloroptropene µg/L 0.5 . . Carbon tetrachloride µg/L 0.5 . . Dibromomethane µg/L 0.5 . . . 2-dichloropropane µg/L 0.5 . . . Dibromomethane (Trichloroethylen, TCE) µg/L 0.5 . . . Bromochloromethane (Trichloroethylene, TCE) µg/L 0.5 . . . Bromochloromethane (Trichloroethylene, TCE) µg/L 0.5 . . . Bromochloromethane (Trichloroethylene, TCE) µg/L 0.5 . . . Bromochloromethane (ThM) µg/L <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Norm Number Numer Numer Numer					
2.2-dichloropropane µg/L 0.5 - - 1.2-dichloropethane µg/L 0.5 - - 1.1.1-trichloropethane µg/L 0.5 - - 1.1.1-trichloropethane µg/L 0.5 - - Carbon tetrachloride µg/L 0.5 - - Dibromomethane µg/L 0.5 - - 1.2-dichloropethene (Trichloroethylene,TCE) µg/L 0.5 - - Bromodichloromethane (THM) µg/L 0.5 - - - MBK (4-methyl-2-pentanone) µg/L 0.5 - - - trans-1.3-dichloropropene µg/L 0.5 - - - trans-1.3-dichloropropene µg/L 0.5 - - - trans-1.3-dichloropropene µg/L 0.5 - - - 1.1.2-trichloroethane (THM) µg/L 0.5 - - - 1.1.3-dichloropropane µg/L 0.5 - - - 1.1.1.2-trichloroethane (FIM) µg/L<				-	-
1.2-dickloredthane µg/L 0.5 - - 1.1,1-trickloroethane µg/L 0.5 - - 1.1,1-trickloroppene µg/L 0.5 - - Carbon tetrachloride µg/L 0.5 - - Dibromomethane µg/L 0.5 - - 1.2-dickloropropane µg/L 0.5 - - Trickloroethane (Trickloroethylene,TCE) µg/L 0.5 - - Somodickloromethane (Trickloroethylene,TCE) µg/L 0.5 - - Bromodickloromethane (Trickloroethylene,TCE) µg/L 0.5 - - Bromodickloromethane (Trickloroethylene,TCE) µg/L 0.5 - - Bromodickloromethane (THM) µg/L 0.5 - - - I.1,2-trickloroeppene µg/L 0.5 - - - 1,1,2-trickloroeppane µg/L 0.5 - - - 1,1,2-trickloroethane (PEM) µg/L 0.5					
Instruction Inpl 0.5 - 1.1-trichloroethane µg/L 0.5 - - Carbon tetrachloride µg/L 0.5 - - Dibromomethane µg/L 0.5 - - 1.2-dichloropropane µg/L 0.5 - - Trichloroethynen (Trichloroethylene,TCE) µg/L 0.5 - - 2-nitropropane µg/L 0.5 - - - Bromodichloromethane (THM) µg/L 0.5 - - - MIBK (4-methyl-2-pentanone) µg/L 0.5 - - - 1.1.2-trichloroethane µg/L 0.5 - - - 1.1.2-trichloroethane µg/L 0.5 - - - 1.1.2-trichloroethane µg/L 0.5 - - - 1.1.2-trichloroethane (THM) µg/L 0.5 - - - 1.1.2-trichloroethane (EDB) µg/L 0.5 -<					
нул. 0.5 - Carbon tetrachloride µg/L 0.5 - - Dibromomethane µg/L 0.5 - - 1.2-dichloropropane µg/L 0.5 - - Trichloroethylene, TCE) µg/L 0.5 - - 2-nitropropane µg/L 0.5 - - Bromodichloromethane (Trikhloroethylene, TCE) µg/L 0.5 - - 2-nitropropane µg/L 0.5 - - - Bromodichloromethane (Trikhloroethylene, TCE) µg/L 0.5 - - - Statischeropropane µg/L 0.5 - - - Bromodichloropropene µg/L 0.5 - - - 1.1.2-trichloroethane (THM) µg/L 0.5 - - - 1.1.2-trichloroethane (THM) µg/L 0.5 - - - 1.1.2-trichloroethane (EDB) µg/L 0.5 - - <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Carbon tetrachloride µg/L 0.5 - Dibromomethane µg/L 0.5 - - 1.2-dichloropropane µg/L 0.5 - - Trichloroethnee (Trichloroethylene,TCE) µg/L 0.05 - - 2-nitropropane µg/L 0.05 - - Bromodichloromethane (THM) µg/L 0.5 - - MIBK (4-methyl-2-pentanone) µg/L 0.5 - - trans-1.3-dichloropropene µg/L 0.5 - - 1.1.2-trichloroethane µg/L 0.5 - - 1.3-dichloropropane µg/L 0.5 - - 1.1.2-trichloroethane µg/L 0.5 - - 1.3-dichloropropane µg/L 0.5 - - Dibromochlaromethane (THM) µg/L 0.5 - - 1.2-dibromoethane (EDB) µg/L 0.5 - - 1.1.1.2-tetrachloroethane µg/L 0.5			·		
Instrume Import Import <thimport< th=""> <thimport< th=""> <thimport< <="" td=""><td></td><td></td><td></td><td></td><td></td></thimport<></thimport<></thimport<>					
1.2-dichloropropane µg/L 0.5 - - Trichloroethene (Trichloroethylene,TCE) µg/L 0.5 - - 2-nitropropane µg/L 0.5 - - Bromodichloromethane (THM) µg/L 0.5 - - MIBK (4-methyl-2-pentanone) µg/L 5 - - miles (4-methyl-2-pentanone) µg/L 0.5 - - trans-1,3-dichloropropene µg/L 0.5 - - 1,1.2-trichloroethane µg/L 0.5 - - 1,3-dichloropropane µg/L 0.5 - - 1,12-trichloroethane (THM) µg/L 0.5 - - 1,1-2-tetrachloroethene (Perchloroethylene,PCE) µg/L 0.5 - - 1,1,1,2-tetrachloroethane			·		
Trichloroethne (Trichloroethylene,TCE) µg/L 0.5 - - 2:nitropropane µg/L 100 - - Bromodichloromethane (THM) µg/L 0.5 - - MIBK (4-methyl-2-pentanone) µg/L 5 - - MIBK (4-methyl-2-pentanone) µg/L 0.5 - - trans-1,3-dichloropropene µg/L 0.5 - - 1,1.2-trichloroethane µg/L 0.5 - - 1,3-dichloropropene µg/L 0.5 - - 1,3-dichloropropane µg/L 0.5 - - 1,3-dichloropropane µg/L 0.5 - - 1,3-dichloropropane µg/L 0.5 - - - Dibromochloromethane (THM) µg/L 0.5 - - - 1,3-dichloropropane µg/L 0.5 - - - - 1,1-2-tetrachloroethane (EDB) µg/L 0.5 - -<					
2-intropropane µg/L 100 - Bromodichloromethane (THM) µg/L 0.5 - - MIBK (4-methyl-2-pentanone) µg/L 5 - - ois-1,3-dichloropropene µg/L 0.5 - - trans-1,3-dichloropropene µg/L 0.5 - - 1,1.2-trichloroethane µg/L 0.5 - - 1,3-dichloropropane µg/L 0.5 - - Dibromochloromethane (THM) µg/L 0.5 - - 1,3-dichloropropane µg/L 0.5 - - Dibromochloromethane (THM) µg/L 0.5 - - 2-hexanone (MBK) µg/L 0.5 - - 1,2-dibromoethane (EDB) µg/L 0.5 - - 1,1,1,2-tetrachloroethane µg/L 0.5 - - Chlorobenzene µg/L 0.5 - - - Bromoform (THM) µg/L 0.5 - - - Styrene (Vinyl benzene) µg/L 0.5				-	
Bromodichloromethane (THM) μg/L 0.5 - - MIBK (4-methyl-2-pentanone) μg/L 5 - - MIBK (4-methyl-2-pentanone) μg/L 0.5 - - cis-1,3-dichloropropene μg/L 0.5 - - trans-1,3-dichloropropene μg/L 0.5 - - 1,1.2-trichloroethane μg/L 0.5 - - 1,3-dichloropropane μg/L 0.5 - - Dibromochloromethane (THM) μg/L 0.5 - - 2-hexanone (MBK) μg/L 0.5 - - 1,2-dibromoethane (EDB) μg/L 0.5 - - 1,1,1,2-tetrachloroethane μg/L 0.5 - - Chlorobenzene μg/L 0.5 - - - Bromoform (THM) μg/L 0.5 - - - cis-1,4-dichloro-2-butene μg/L 0.5 - - - Styr					
MBK (4-methyl-2-pentanone) µg/L 5 - - cis-1,3-dichloropropene µg/L 0.5 - - trans-1,3-dichloropropene µg/L 0.5 - - 1,1,2-trichloroptopene µg/L 0.5 - - 1,1,2-trichloroptopene µg/L 0.5 - - 1,3-dichloroptopane µg/L 0.5 - - Dibromochloromethane (THM) µg/L 0.5 - - 2-hexanone (MBK) µg/L 0.5 - - 1,2-dibromoethane (EDB) µg/L 0.5 - - 1,1,1,2-tetrachloroethane µg/L 0.5 - - Chlorobenzene µg/L 0.5 - - - Bromoform (THM) µg/L 0.5 - - - styrene (Vinyl benzene) µg/L 0.5 - - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - -					
cis-1,3-dichloropropene µg/L 0.5 - - trans-1,3-dichloropropene µg/L 0.5 - - 1,1,2-trichloroethane µg/L 0.5 - - 1,3-dichloropropane µg/L 0.5 - - Dibromochloromethane (THM) µg/L 0.5 - - 2-hexanone (MBK) µg/L 0.5 - - 1,2-dibromoethane (EDB) µg/L 0.5 - - 1,2-dibromoethane (Perchloroethylene,PCE) µg/L 0.5 - - 1,1,1,2-tetrachloroethane µg/L 0.5 - - Chlorobenzene µg/L 0.5 - - Bromoform (THM) µg/L 0.5 - - cis-1,4-dichloro-2-butene µg/L 1 - - Styrene (Vinyl benzene) µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L					
trans-1,3-dichloropropene µg/L 0.5 - - 1,1,2-trichloroethane µg/L 0.5 - - 1,3-dichloropropane µg/L 0.5 - - Dibromochloromethane (THM) µg/L 0.5 - - 2-hexanone (MBK) µg/L 5 - - 1,2-dibromoethane (EDB) µg/L 0.5 - - 1,1,2-tetrachloroethane µg/L 0.5 - - 1,1,1,2-tetrachloroethane µg/L 0.5 - - 1,1,1,2-tetrachloroethane µg/L 0.5 - - Chlorobenzene µg/L 0.5 - - Bromoform (THM) µg/L 0.5 - - cis-1,4-dichloro-2-butene µg/L 1 - - Styrene (Vinyl benzene) µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L 0.5					
1,1,2-trichloroethane µg/L 0.5 - - 1,3-dichloropropane µg/L 0.5 - - Dibromochloromethane (THM) µg/L 0.5 - - 2-hexanone (MBK) µg/L 0.5 - - 1,2-dibromoethane (EDB) µg/L 0.5 - - 1,2-dibromoethane (Perchloroethylene,PCE) µg/L 0.5 - - 1,1,1,2-tetrachloroethane µg/L 0.5 - - Chlorobenzene µg/L 0.5 - - Bromoform (THM) µg/L 0.5 - - cis-1,4-dichloro-2-butene µg/L 0.5 - - Styrene (Vinyl benzene) µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - 1,2,2-tetrachloroethane µg/L 0.5 - - 1,2,2-tetrachloroethane µg/L 0.5 - - 1,2,2-tetrachloroethane µg/L 0.5 - - 1,2,3-trichloropropane µg/L					
1,3-dichloropropane µg/L 0.5 - - Dibromochloromethane (THM) µg/L 0.5 - - 2-hexanone (MBK) µg/L 5 - - 1,2-dibromoethane (EDB) µg/L 0.5 - - 1,2-dibromoethane (Perchloroethylene,PCE) µg/L 0.5 - - 1,1,1,2-tetrachloroethane µg/L 0.5 - - Chlorobenzene µg/L 0.5 - - Bromoform (THM) µg/L 0.5 - - styrene (Vinyl benzene) µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - 1,2,2-tetrachloroethane µg/L 0.5 - -				-	
Dibromochloromethane (THM) µg/L 0.5 - - 2-hexanone (MBK) µg/L 5 - - - 1,2-dibromoethane (EDB) µg/L 0.5 - - - 1,2-dibromoethane (EDB) µg/L 0.5 - - - Tetrachloroethene (Perchloroethylene,PCE) µg/L 0.5 - - - 1,1,1,2-tetrachloroethane µg/L 0.5 - - - Chlorobenzene µg/L 0.5 - - - Bromoform (THM) µg/L 0.5 - - - cis-1,4-dichloro-2-butene µg/L 1 - - - Styrene (Vinyl benzene) µg/L 0.5 - - - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - - - 1,2,3-trichloropopane µg/L 0.5 - - - -					
2-hexanone (MBK) µg/L 5 - - 1,2-dibromoethane (EDB) µg/L 0.5 - - Tetrachloroethane (Perchloroethylene,PCE) µg/L 0.5 - - 1,1,1,2-tetrachloroethane µg/L 0.5 - - Chlorobenzene µg/L 0.5 - - Bromoform (THM) µg/L 0.5 - - cis-1,4-dichloro-2-butene µg/L 1 - - Styrene (Vinyl benzene) µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - 1,2,3-trichloropane µg/L 0.5 - -	1,3-dichloropropane				
1,2-dibromoethane (EDB) µg/L 0.5 - - Tetrachloroethene (Perchloroethylene,PCE) µg/L 0.5 - - 1,1,1,2-tetrachloroethane µg/L 0.5 - - Chlorobenzene µg/L 0.5 - - Bromoform (THM) µg/L 0.5 - - cis-1,4-dichloro-2-butene µg/L 1 - - Styrene (Vinyl benzene) µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L 0.5 - -					
Tetrachloroethene (Perchloroethylene,PCE) µg/L 0.5 - - 1,1,1,2-tetrachloroethane µg/L 0.5 - - - Chlorobenzene µg/L 0.5 - - - Bromoform (THM) µg/L 0.5 - - - Styrene (Vinyl benzene) µg/L 0.5 - - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - - 1,2,3-trichloroporpane µg/L 0.5 - - -					
1,1,2-tetrachloroethane µg/L 0.5 - - Chlorobenzene µg/L 0.5 - - Bromoform (THM) µg/L 0.5 - - cis-1,4-dichloro-2-butene µg/L 1 - - Styrene (Vinyl benzene) µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - 1,2,3-trichloropropane µg/L 0.5 - -					
Lolorobenzene µg/L 0.5 - - Bromoform (THM) µg/L 0.5 - - - cis-1,4-dichloro-2-butene µg/L 1 - - - Styrene (Vinyl benzene) µg/L 0.5 - - - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - - - 1,2,3-trichloropropane µg/L 0.5 - - - -					
Bromoform (THM) µg/L 0.5 - - cis-1,4-dichloro-2-butene µg/L 1 - - Styrene (Vinyl benzene) µg/L 0.5 - - 1,1,2,2-tetrachloroopropane µg/L 0.5 - -					
cis-1,4-dichloro-2-butene µg/L 1 - Styrene (Vinyl benzene) µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - 1,2,3-trichloropropane µg/L 0.5 - -					
Styrene (Vinyl benzene) µg/L 0.5 - - 1,1,2,2-tetrachloroethane µg/L 0.5 - - 1,2,3-trichloropropane µg/L 0.5 - -					
1,1,2,2-tetrachloroethane µg/L 0.5 - - 1,2,3-trichloropropane µg/L 0.5 - -	cis-1,4-dichloro-2-butene				
1,2,3-trichloropropane µg/L 0.5	Styrene (Vinyl benzene)				
trans-1,4-dichloro-2-butene µg/L 1					
	trans-1,4-dichloro-2-butene	µg/L	1	-	-

VOCs in Water [AN433] Tested: 7/5/2018 (continued)

			GWTS1	GWTB1
			WATER	WATER
			- 2/5/2018	- 2/5/2018
PARAMETER	UOM	LOR	SE178657.006	SE178657.007
Isopropylbenzene (Cumene)	µg/L	0.5	-	-
Bromobenzene	µg/L	0.5	-	-
n-propylbenzene	µg/L	0.5	-	-
2-chlorotoluene	µg/L	0.5	-	-
4-chlorotoluene	µg/L	0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	-	-
tert-butylbenzene	µg/L	0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	-	-
sec-butylbenzene	µg/L	0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	-	-
p-isopropyltoluene	µg/L	0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	-	-
n-butylbenzene	µg/L	0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	-	-
1,2,4-trichlorobenzene	µg/L	0.5	-	-
Hexachlorobutadiene	µg/L	0.5	-	-
1,2,3-trichlorobenzene	µg/L	0.5	-	-
Total VOC	µg/L	10	-	-

SE178657 R0

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 7/5/2018

			BH1M	BH2M	BH8M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	SE178657.001	SE178657.002	SE178657.003	SE178657.004	SE178657.005
TRH C6-C9	µg/L	40	<40	<40	<40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50	<50	<50

ANALYTICAL RESULTS

SE178657 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 7/5/2018

			BH1M	BH2M	BH8M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	SE178657.001	SE178657.002	SE178657.003	SE178657.004	SE178657.005
TRH C10-C14	µg/L	50	<50	<50	<50	<50	<50
TRH C15-C28	µg/L	200	<200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16	μg/L	60	<60	<60	<60	<60	<60
TRH >C16-C34 (F3)	μg/L	500	<500	<500	<500	<500	<500
TRH >C34-C40 (F4)	μg/L	500	<500	<500	<500	<500	<500
TRH C10-C36	µg/L	450	<450	<450	<450	<450	<450
TRH C10-C40	µg/L	650	<650	<650	<650	<650	<650
TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60	<60	<60	<60	<60

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 7/5/2018

			BH1M	BH2M	BH8M
			WATER	WATER	WATER
			2/5/2018	2/5/2018	2/5/2018
PARAMETER	UOM	LOR	SE178657.001	SE178657.002	SE178657.003
Naphthalene	µg/L	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1	<1

Total Phenolics in Water [AN289] Tested: 7/5/2018

			BH1M	BH2M	BH8M
			WATER	WATER	WATER
				2/5/2018	2/5/2018
PARAMETER	UOM	LOR	SE178657.001	SE178657.002	SE178657.003
Total Phenols	mg/L	0.01	<0.01	<0.01	<0.01

Metals in Water (Dissolved) by ICPOES [AN320] Tested: 8/5/2018

			BH1M	BH2M	BH8M
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE178657.001	SE178657.002	SE178657.003
Total Hardness by Calculation	mg CaCO3/L	5	2600	1700	2000

SE178657 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 8/5/2018

			BH1M	BH2M	BH8M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
			-	-	-	-	-
PARAMETER	UOM	LOR	2/5/2018 SE178657.001	2/5/2018 SE178657.002	2/5/2018 SE178657.003	2/5/2018 SE178657.004	2/5/2018 SE178657.005
Arsenic, As	µg/L	1	<1	3	1	3	<1
Cadmium, Cd	µg/L	0.1	0.2	0.4	0.2	0.3	<0.1
Chromium, Cr	µg/L	1	4	110	27	110	<1
Copper, Cu	µg/L	1	36	52	45	15	<1
Lead, Pb	µg/L	1	3	4	4	<1	<1
Nickel, Ni	µg/L	1	15	3	11	2	<1
Zinc, Zn	µg/L	5	86	59	180	<5	<5
Aluminium, Al	µg/L	5	14	92	39	89	<5

SE178657 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 9/5/2018

			BH1M	BH2M	BH8M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
							2/5/2018
PARAMETER	UOM	LOR	SE178657.001	SE178657.002	SE178657.003	SE178657.004	SE178657.005
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

METHOD	
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 190116

Client Details	
Client	El Australia
Attention	Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E23796, Liverpool
Number of Samples	1 Soil
Date samples received	23/04/2018
Date completed instructions received	23/04/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	01/05/2018			
Date of Issue	30/04/2018			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with	ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By Dragana Tomas, Senior Chemist Long Pham, Team Leader, Metals Steven Luong, Senior Chemist Authorised By

Jacinta Hurst, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		190116-1
Your Reference	UNITS	QT1
Date Sampled		20/04/2018
Type of sample		Soil
Date extracted	-	24/04/2018
Date analysed	-	26/04/2018
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	71

svTRH (C10-C40) in Soil		
Our Reference		190116-1
Your Reference	UNITS	QT1
Date Sampled		20/04/2018
Type of sample		Soil
Date extracted	-	24/04/2018
Date analysed	-	25/04/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	79

Acid Extractable metals in soil		
Our Reference		190116-1
Your Reference	UNITS	QT1
Date Sampled		20/04/2018
Type of sample		Soil
Date prepared	-	24/04/2018
Date analysed	-	24/04/2018
Arsenic	mg/kg	6
Cadmium	mg/kg	<0.4
Chromium	mg/kg	20
Copper	mg/kg	20
Lead	mg/kg	100
Mercury	mg/kg	<0.1
Nickel	mg/kg	22
Zinc	mg/kg	130

Moisture		
Our Reference		190116-1
Your Reference	UNITS	QT1
Date Sampled		20/04/2018
Type of sample		Soil
Date prepared	-	24/04/2018
Date analysed	-	26/04/2018
Moisture	%	17

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			24/04/2018	[NT]		[NT]	[NT]	24/04/2018	
Date analysed	-			26/04/2018	[NT]		[NT]	[NT]	26/04/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	103	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	103	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	100	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	100	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	112	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	101	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	103	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	75	[NT]		[NT]	[NT]	70	

QUALITY CONTROL: svTRH (C10-C40) in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			24/04/2018	[NT]		[NT]	[NT]	24/04/2018	
Date analysed	-			25/04/2018	[NT]		[NT]	[NT]	25/04/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	109	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	87	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	109	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	87	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-003	82	[NT]	[NT]	[NT]	[NT]	94	[NT]

QUALITY CONTROL: Acid Extractable metals in soil						Du	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date prepared	-			24/04/2018	[NT]	[NT]		[NT]	24/04/2018	
Date analysed	-			24/04/2018	[NT]	[NT]		[NT]	24/04/2018	
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]		[NT]	111	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]		[NT]	103	
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	110	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	111	
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	104	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]		[NT]	101	
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	109	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	105	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform. Faecal Enterococci. & E.Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

CERTIFICATE OF ANALYSIS 190745

Client Details	
Client	El Australia
Attention	Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E23796, Liverpool
Number of Samples	1 water
Date samples received	03/05/2018
Date completed instructions received	03/05/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	10/05/2018		
Date of Issue	09/05/2018		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By Jaimie Loa-Kum-Cheung, Senior Chemist Jeremy Faircloth, Organics Supervisor Authorised By

Jacinta Hurst, Laboratory Manager

Envirolab Reference: 190745 Revision No: R00

vTRH(C6-C10)/BTEXN in Water		
Our Reference		190745-1
Your Reference	UNITS	GWQT1
Date Sampled		02/05/2018
Type of sample		water
Date extracted	-	04/05/2018
Date analysed	-	04/05/2018
TRH C ₆ - C ₉	µg/L	<10
TRH C6 - C10	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	2
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	105
Surrogate toluene-d8	%	97
Surrogate 4-BFB	%	90

svTRH (C10-C40) in Water		
Our Reference		190745-1
Your Reference	UNITS	GWQT1
Date Sampled		02/05/2018
Type of sample		water
Date extracted	-	04/05/2018
Date analysed	-	04/05/2018
TRH C ₁₀ - C ₁₄	µg/L	83
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	µg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	62
TRH >C10 - C16 less Naphthalene (F2)	μg/L	62
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	86

HM in water - dissolved		
Our Reference		190745-1
Your Reference	UNITS	GWQT1
Date Sampled		02/05/2018
Type of sample		water
Date prepared	-	04/05/2018
Date analysed	-	04/05/2018
Aluminium-Dissolved	µg/L	100
Arsenic-Dissolved	µg/L	2
Cadmium-Dissolved	µg/L	<0.1
Chromium-Dissolved	µg/L	130
Copper-Dissolved	µg/L	18
Lead-Dissolved	µg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	µg/L	3
Zinc-Dissolved	µg/L	8

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTI	ROL: vTRH(C6-C10)/E	3TEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			04/05/2018	1	04/05/2018	04/05/2018		04/05/2018	
Date analysed	-			04/05/2018	1	04/05/2018	04/05/2018		04/05/2018	
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	1	<10	<10	0	118	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	1	<10	<10	0	118	
Benzene	μg/L	1	Org-016	<1	1	<1	<1	0	119	
Toluene	μg/L	1	Org-016	<1	1	<1	<1	0	120	
Ethylbenzene	μg/L	1	Org-016	<1	1	2	2	0	118	
m+p-xylene	μg/L	2	Org-016	<2	1	<2	<2	0	117	
o-xylene	μg/L	1	Org-016	<1	1	<1	<1	0	119	
Naphthalene	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	102	1	105	104	1	102	
Surrogate toluene-d8	%		Org-016	97	1	97	99	2	101	
Surrogate 4-BFB	%		Org-016	88	1	90	90	0	97	

QUALITY CONTROL: svTRH (C10-C40) in Water						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			04/05/2018	[NT]		[NT]	[NT]	04/05/2018	
Date analysed	-			04/05/2018	[NT]		[NT]	[NT]	04/05/2018	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	127	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	120	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	107	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	127	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	120	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	107	
Surrogate o-Terphenyl	%		Org-003	69	[NT]		[NT]	[NT]	107	

QUALITY CONTROL: HM in water - dissolved						Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			04/05/2018	[NT]		[NT]	[NT]	04/05/2018	
Date analysed	-			04/05/2018	[NT]		[NT]	[NT]	04/05/2018	
Aluminium-Dissolved	µg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	95	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	102	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	89	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	

Result Definiti	Result Definitions					
NT	Not tested					
NA	Test not required					
INS	Insufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform. Faecal Enterococci. & E.Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02_Rev1

APPENDIX J

QA/QC Assessment

J1 QUALITY CONTROL PROGRAM

J1.1 INTRODUCTION

For the purpose of assessing the quality of data presented in this DSI, EI collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed internal QC samples. Details of the field and laboratory QC samples, with the allowable data acceptance ranges are presented in **Table J-1**.

QA/QC Measures	Data Quality Indicators					
Precision – A quantitative measure of the variability (or reproducibility) of data	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:					
	 Results are less than 10 times the limits of reporting (LOR); 					
	Results are less than 20 times the LOR and the RPD is less than 50%; or					
	Heterogeneous materials or volatile compounds are encountered.					
Accuracy – A quantitative	Data accuracy would be assessed through the analysis of:					
measure of the closeness of reported data to the "true" value	• Method blanks, which are analysed for the analytes targeted in the primary samples;					
	 Matrix spike and matrix spike duplicate sample sets; 					
	Laboratory control samples; and					
	Calibration of instruments against known standards.					
Representativeness – The confidence (expressed	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:					
qualitatively) that data are representative of each medium present onsite	 Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts; 					
present onsite	 Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and 					
	• The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).					
Completeness – A measure of the amount of useable data from	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:					
a data collection activity	 Standard operating procedures (SOPs) for sampling protocols were adhered to; and 					
	• Copies of all COC documentation are presented, reviewed and found to be properly completed.					
	It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.					

Table J-1 Sampling Data Quality Indicators

QA/QC Measures	Data Quality Indicators
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity.
each sampling and analytical event	In addition the data will be collected by experienced samplers and NATA- accredited laboratory methodologies will be employed in all laboratory testing programs.

J1.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

Co = Concentration obtained for the primary sample; and

C_R = Concentration obtained for the blind replicate or split duplicate sample.

J2 FIELD QA/QC DATA EVALUATION

The field quality assurance/quality control (QA/QC) soil and groundwater samples collected during the investigations were as follows:

- Blind field duplicates;
- Inter-laboratory duplicates;
- Trip blanks;
- Trip spikes; and
- Rinsate blanks.

Analytical results for tested soil and groundwater QA/QC samples, including calculated RPD values between primary and duplicate samples, are presented in **Table J-2** and **Table J-3**, respectively.

J2.1 SOIL INVESTIGATION & SOIL VALIDATION

J2.1.1 Blind Field Duplicates

A blind field duplicates (BFD) was collected, including:

1) QD1 collected from the primary sample BH2M_0.2-0.3 on 20 April 2018.

The preparation of the BFD sample involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The duplicate pair was analysed for TRH, BTEX and selected priority metals with the RPD values calculated found to be within the Data Acceptance Criteria (**Appendix J, Table J2**), with the exception of Lead, Mercury and Zinc with a calculated RPD values of 66.67%, 75.86%, and 58.82% respectively . El consider this is due to the heterogeneous nature of fill material.

J2.1.2Inter-Laboratory Duplicate

An inter-laboratory duplicates (ILDs) was collected, including:

1) QT-1 collected from the primary sample BH2M_0.2-0.3 on 20 April 2018;

The preparation of the ILD sample was identical to the BFD sample as described above and analysed for TRH, BTEX and selected heavy metals. The RPD values calculated for the ILD samples were found to be within the Data Acceptance Criteria (**Appendix J, Table J-2**), with the exception of Mercury with a calculated RPD values of 66.67. El consider this is due to the heterogeneous nature of fill material.

J2.1.3 Rinsate Blank

One rinsate blank (QR1) sample was submitted to the primary laboratory for selected priority metals, TRH and BTEX analysis. The results for which were reported below laboratory LOR, with the exception of various metals; as all other tested contaminants were below LOR it was concluded that decontamination procedures performed during the field works had been effective.

J2.1.4Trip Blank

One trip blank (TB1) sample was prepared and analysed by the primary laboratory for BTEX and Naphthalene. Analytical results for this sample were below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

J2.1.5Trip Spike

One trip spike (TS1) sample was submitted to the primary laboratory for TRH and BTEX analysis, the results for which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

J2.2 GROUNDWATER INVESTIGATION

J2.2.1 Blind Field Duplicates

One Blind Field Duplicates (BFD) was collected, including:

1) GWQD1 collected from the primary sample BH2M on 2 May 2018.

The preparation of BFD samples involved the decanting of the groundwater collected from the respective monitoring well into two separate groups of appropriately labelled sampling containers. Volumes were split equally between the groups of sampling bottles such that the sample contained in each individual bottle, contained a similar proportion of each water volume. Sample mixing did not occur prior to decanting, in order to preserve the concentrations of volatiles potentially present within the sample. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFD was analysed for TRHs, BTEX, selected heavy metals, PAHs and VOCs. The RPD values calculated for all the analytes tested were found to be within the DAC, with the exception of copper (RPD=110.45%), lead (RPD=120%), and zinc (RPD=168.75%), due to the low concentrations detected.

J2.2.2Inter-Laboratory Duplicate

One inter laboratory duplicate (ILD) was collected, including:

2) GWQT1 collected from the primary sample BH2M on 2 May 2018.

The preparation of ILD sample was identical to GWQD1. The duplicate sample was analysed by the secondary laboratory Envirolab for TRHs, BTEX and selected priority metals. The RPD values calculated for all the analytes tested were found to be within the Data Acceptance Criteria (DAC), with the exception of Ethylbenzene (RPD=85.71%), Cadmium (RPD=120%), copper (RPD=97.14%), lead (RPD=120%), and zinc (RPD=152.24%), due to the low concentrations detected.

J2.2.3Rinsate Blanks

An equipment rinsate sample was collected, including:

1) GWQR1 collected on 2 May 2018.

One rinsate blank sample GWQR1 was submitted to the primary laboratory for TRHs, BTEX and selected heavy metals, the results for which were reported below laboratory.

J2.4 ASSESSMENT OF FIELD QA/QC DATA

All samples were classified in the field with respect to any observable signs of contamination based on visual and odour assessment and observable characteristics, in regards to soil and groundwater. Furthermore, samples were placed immediately into laboratory supplied containers to reduce the loss of volatiles. Results of sampling indicated that the samples collected were representative of the conditions present at the time of sampling. El conclude that the samples collected are representative of the soils present at the respective sampling locations.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

The overall completeness of documentation produced under the field program of the subject assessment was considered to be adequate for the purposes of drawing valid conclusions regarding the environmental condition of the site.

Based on the results of the field QA/QC data EI considered the field QA/QC programme carried out during the data gap closure investigations to be appropriate and the results to be acceptable.

J3 LABORATORY QA/QC

J3.1 LABORATORY ACCREDITATION

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy, respective tests are accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate.

J3.2 SAMPLE HOLDING TIMES

All sample holding times were generally within standard environmental protocols as tabulated in **Appendix H, Tables QC1 and QC2**.

J3.3 TEST METHODS AND PRACTICAL QUANTITATION LIMITS (PQLS)

Practical Quantitation Limits for all tested parameters during the assessment of soils and groundwater are presented in **AppendixJ**, **Tables J-2** and **J-3a**.

J3.4 METHOD BLANKS

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

J3.5 LABORATORY DUPLICATE SAMPLES

The Laboratory Control Samples (LCS) for the analysis batches showed calculated RPDs that were within acceptable ranges and conformed to the DAC, with the exception of some metals in soil results for the majority of tested laboratory duplicates. This is believed to reflect fill soil sample heterogeneity and does not necessarily indicate that analytical results are invalid.

J3.6 LABORATORY CONTROL SAMPLES

The Laboratory Control Samples for the analysis batches were within acceptable ranges and conformed to the DAC.

J3.7 MATRIX SPIKES

All matrix spikes for the respective sample batches were within acceptable ranges and conformed to the DAC.

J3.8 SURROGATE

Recovery results for all surrogate samples conformed to the DAC.

J3.9 CONCLUDING REMARK

Based on the laboratory QA/QC results EI considers that although a small number of discrepancies were identified, the data generally confirms that the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes

			TI	RH			BT	EX					Heavy	Metals			
Sample identification	Description	F1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory	y Duplicate - Soil Inves	tigation															
BH2M 0.2-0.3	Fill	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	5	<0.3	19	21	130	0.2	15	120
QD1	BFD of BH2M 0.2-0.3	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	5	<0.3	18	25	260	0.09	11	220
	RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.41	17.39	66.67	75.86	30.77	58.82
Inter-laboratory	y Duplicate - Soil Inves	tigation	-		-							-	-				
BH2M 0.2-0.3	Fill	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	5	<0.3	19	21	130	0.2	15	120
QT1	ILD of BH2M 0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	6	<0.4	20	20	100	<0.1	22	130
	RPD	0.00	NA	NA	NA	NA	NA	NA	NA	<i>18.18</i>	NA	5.13	4.88	26.09	66.67	37.84	8.00
Trip Blanks																	
TB1	Soil	NA	NA	NA	NA	<0.1	<0.1	<0.1	<0.3	NA	NA	NA	NA	NA	NA	NA	NA
Trip Spikes																	
TS1	Soil	NA	NA	NA	NA	[79%]	[79%]	[76%]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Rinsate Blanks																	
QR1	Water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	2	<1	<1	<0.1	<1	<5

NOTE: All results are reported in mg/kg (soil) or µg/L (water)

66.67RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005)52.87RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Table J3 - Groundwater QAQC results tables

			TF	RH			BT	ΈX					Heavy	Metals			
Sample identification	Description	F1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laborate	Intra-laboratory Duplicate - Groundwater Investigation																
BH2M	Groundwater	<50	<60	<500	<500	<0.5	<0.5	0.8	<1.5	3	0.4	110	52	4	<0.1	3	59
GWQD1	BFD of BH2M	<50	<60	<500	<500	<0.5	<0.5	0.6	<1.5	3	0.3	110	15	<1	<0.1	2	<5
-	RPD	0.00	0.00	0.00	0.00	0.00	0.00	<i>28.57</i>	0.00	0.00	28.57	0.00	110.45	120.00	0.00	40.00	168.75
Inter-laborate	ory Duplicate - Ground	dwater Invest	igation														
BH2M	Groundwater	<50	<60	<500	<500	<0.5	<0.5	0.8	<1.5	3	0.4	110	52	4	<0.1	3	59
GWQT1	ILD of BH2M	<10	62	<100	<100	<1	<1	2	<2	2	<0.1	130	18	<1	<0.05	3	8
	RPD	NA	3.28	NA	NA	NA	NA	85.71	NA	40.00	120.00	16.67	97.14	120.00	NA	0.00	152.24
Rinsate Blanks																	
GWQR1	Water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.01	<1	<5

NOTE: All results are reported in mg/kg (soil) or μ g/L (water)

66.67RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005)66.67RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Detailed Site Investigation 26 Elizabeth Street, Liverpool NSW Report No. E23796.E02 Rev1

APPENDIX K

Laboratory QA/QC Policies and DQOs

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	ILS
Contact	Sharon Li	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sharon.li@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23796 - 26 Elizabeth St, Liverpool NSW	SGS Reference	SE178319 R0
Order Number	E23796	Date Received	23 Apr 2018
Samples	30	Date Reported	01 May 2018

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

2 items

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

Method: ME-(AU)-[ENV]AN602

Method: ME-(AU)-[ENV]AN312

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M 0.2-0.3	SE178319.001	LB146705	20 Apr 2018	23 Apr 2018	20 Apr 2019	30 Apr 2018	20 Apr 2019	01 May 2018
BH2M 0.2-0.3	SE178319.008	LB146705	20 Apr 2018	23 Apr 2018	20 Apr 2019	30 Apr 2018	20 Apr 2019	01 May 2018
BH3 0.2-0.3	SE178319.016	LB146705	20 Apr 2018	23 Apr 2018	20 Apr 2019	30 Apr 2018	20 Apr 2019	01 May 2018
BH4 0.2-0.3	SE178319.017	LB146705	20 Apr 2018	23 Apr 2018	20 Apr 2019	30 Apr 2018	20 Apr 2019	01 May 2018
BH5 0.3-0.4	SE178319.018	LB146705	20 Apr 2018	23 Apr 2018	20 Apr 2019	30 Apr 2018	20 Apr 2019	01 May 2018
BH6 0.3-0.4	SE178319.019	LB146705	20 Apr 2018	23 Apr 2018	20 Apr 2019	30 Apr 2018	20 Apr 2019	01 May 2018
BH7 0.2-0.3	SE178319.021	LB146705	20 Apr 2018	23 Apr 2018	20 Apr 2019	30 Apr 2018	20 Apr 2019	01 May 2018
BH8M 0.5-0.6	SE178319.022	LB146705	20 Apr 2018	23 Apr 2018	20 Apr 2019	30 Apr 2018	20 Apr 2019	01 May 2018
BH9 0.2-0.3	SE178319.025	LB146705	20 Apr 2018	23 Apr 2018	20 Apr 2019	30 Apr 2018	20 Apr 2019	01 May 2018

ercury (dissolved) in Water

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE178319.028	LB146397	20 Apr 2018	23 Apr 2018	18 May 2018	26 Apr 2018	18 May 2018	26 Apr 2018

Mercury in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M 0.2-0.3	SE178319.001	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
BH1M 0.6-0.7	SE178319.002	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
BH2M 0.2-0.3	SE178319.008	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
BH2M 0.5-0.6	SE178319.009	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
BH3 0.2-0.3	SE178319.016	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
BH4 0.2-0.3	SE178319.017	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
BH5 0.3-0.4	SE178319.018	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
BH6 0.3-0.4	SE178319.019	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
BH6 0.6-0.7	SE178319.020	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
BH7 0.2-0.3	SE178319.021	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
BH8M 0.5-0.6	SE178319.022	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
BH9 0.2-0.3	SE178319.025	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
BH9 0.9-1.0	SE178319.026	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018
QD1	SE178319.027	LB146571	20 Apr 2018	23 Apr 2018	18 May 2018	27 Apr 2018	18 May 2018	01 May 2018

Moisture Content

Moisture Content							Method: I	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M 0.2-0.3	SE178319.001	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
BH1M 0.6-0.7	SE178319.002	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
BH2M 0.2-0.3	SE178319.008	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
BH2M 0.5-0.6	SE178319.009	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
BH3 0.2-0.3	SE178319.016	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
BH4 0.2-0.3	SE178319.017	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
BH5 0.3-0.4	SE178319.018	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
BH6 0.3-0.4	SE178319.019	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
BH6 0.6-0.7	SE178319.020	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
BH7 0.2-0.3	SE178319.021	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
BH8M 0.5-0.6	SE178319.022	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
BH9 0.2-0.3	SE178319.025	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
BH9 0.9-1.0	SE178319.026	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018
QD1	SE178319.027	LB146659	20 Apr 2018	23 Apr 2018	04 May 2018	30 Apr 2018	05 May 2018	01 May 2018

C Docticidos in Soil

SE178319.030

LB146659

20 Apr 2018

TB1

OC Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M 0.2-0.3	SE178319.001	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
BH1M 0.6-0.7	SE178319.002	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018
BH2M 0.2-0.3	SE178319.008	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
BH2M 0.5-0.6	SE178319.009	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018
BH3 0.2-0.3	SE178319.016	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
BH4 0.2-0.3	SE178319.017	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
BH5 0.3-0.4	SE178319.018	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
BH6 0.3-0.4	SE178319.019	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
BH6 0.6-0.7	SE178319.020	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018
BH7 0.2-0.3	SE178319.021	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018

23 Apr 2018

04 May 2018

30 Apr 2018

05 May 2018

01 May 2018

Method: ME-(AU)-[ENV]AN420

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OC Pesticides in Soil (continued)

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH8M 0.5-0.6	SE178319.022	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
BH9 0.2-0.3	SE178319.025	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
BH9 0.9-1.0	SE178319.026	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018
QD1	SE178319.027	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018

OP Pesticides in Soi Method: ME-(AU)-[ENVIAN420 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH1M 0.2-0.3 SE178319.001 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH1M 0.6-0.7 SE178319.002 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 01 May 2018 BH2M 0 2-0 3 SE178319 008 I B146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH2M 0.5-0.6 SE178319.009 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 01 May 2018 BH3 0.2-0.3 LB146373 SE178319.016 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH4 0.2-0.3 SE178319.017 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH5 0.3-0.4 SE178319.018 LB146373 03 Jun 2018 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 30 Apr 2018 BH6 0.3-0.4 SE178319.019 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH6 0.6-0.7 SE178319.020 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 01 May 2018 BH7 0.2-0.3 SE178319.021 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH8M 0 5-0 6 SE178319 022 I B146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH9 0.2-0.3 SE178319.025 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH9 0.9-1.0 SE178319.026 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 01 May 2018 QD1 SE178319.027 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 01 May 2018

PAH (Polynuclear Aromatic Hydroc arbons) in Soil Method: ME-(AU)-[ENVIAN420 Analysis Due Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted LB146373 BH1M 0.2-0.3 SE178319.001 30 Apr 2018 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 BH1M 0.6-0.7 SE178319.002 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH2M 0.2-0.3 SE178319.008 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH2M 0.5-0.6 SE178319.009 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH3 0.2-0.3 SE178319.016 LB146373 20 Apr 2018 23 Apr 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 04 May 2018 BH4 0 2-0 3 SE178319.017 I B146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH5 0.3-0.4 SE178319.018 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH6 0.3-0.4 SE178319.019 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 LB146373 BH6 0.6-0.7 SE178319.020 23 Apr 2018 04 May 2018 03 Jun 2018 30 Apr 2018 20 Apr 2018 24 Apr 2018 BH7 0.2-0.3 SE178319.021 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH8M 0.5-0.6 SE178319.022 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH9 0.2-0.3 SE178319.025 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 LB146373 20 Apr 2018 BH9 0.9-1.0 SE178319.026 23 Apr 2018 03 Jun 2018 04 May 2018 24 Apr 2018 30 Apr 2018 QD1

SE178319.027 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 01 May 2018 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Name QC Ref Sampled Extraction Due Extracted Analysis Due Analysed Sample No. Received BH1M 0.2-0.3 SE178319.001 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH1M 0.6-0.7 SE178319.002 LB146373 04 May 2018 01 May 2018 20 Apr 2018 23 Apr 2018 24 Apr 2018 03 Jun 2018 BH2M 0.2-0.3 SE178319.008 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH2M 0.5-0.6 SE178319.009 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 01 May 2018 BH3 0.2-0.3 SE178319.016 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH4 0.2-0.3 SE178319.017 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH5 0.3-0.4 SE178319.018 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 20 Apr 2018 BH6 0.3-0.4 SE178319.019 LB146373 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH6 0.6-0.7 SE178319.020 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 01 May 2018 BH7 0.2-0.3 SE178319.021 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 LB146373 BH8M 0.5-0.6 SE178319.022 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 BH9 0.2-0.3 SE178319.025 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 30 Apr 2018 20 Apr 2018 24 Apr 2018 BH9 0.9-1.0 SE178319.026 LB146373 23 Apr 2018 04 May 2018 03 Jun 2018 01 May 2018 QD1 SE178319.027 LB146373 20 Apr 2018 23 Apr 2018 04 May 2018 24 Apr 2018 03 Jun 2018 01 May 2018

Method: ME-(AU)-[ENVIAN040/AN320 **Total Recoverable Elements in Soil/Wa** ste Solids/Materials by ICPOES Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH1M 0.2-0.3 SE178319.001 LB146547 20 Apr 2018 23 Apr 2018 17 Oct 2018 27 Apr 2018 17 Oct 2018 01 May 2018 01 May 2018 BH1M 0 6-0 7 SE178319.002 I B146547 20 Apr 2018 23 Apr 2018 17 Oct 2018 27 Apr 2018 17 Oct 2018 BH2M 0.2-0.3 SE178319.008 LB146547 20 Apr 2018 23 Apr 2018 17 Oct 2018 27 Apr 2018 17 Oct 2018 01 May 2018 BH2M 0.5-0.6 SE178319.009 LB146547 20 Apr 2018 23 Apr 2018 17 Oct 2018 27 Apr 2018 17 Oct 2018 01 May 2018

01 May 2018

Method: ME-(AU)-[ENV]AN403

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued) Method: ME-(AU)-[ENV]AN040/AN320 Sampled Sample Name Sample No. QC Ref Extraction Due Analysis Due Analysed Received Extracted BH3 0.2-0.3 SE178319.016 I B146547 20 Apr 2018 23 Apr 2018 17 Oct 2018 27 Apr 2018 17 Oct 2018 BH4 0.2-0.3 SE178319.017 LB146547 17 Oct 2018 17 Oct 2018 20 Apr 2018 23 Apr 2018 27 Apr 2018 BH5 0.3-0.4 SE178319.018 LB146547 20 Apr 2018 23 Apr 2018 17 Oct 2018 27 Apr 2018 17 Oct 2018 BH6 0.3-0.4 SE178319.019 LB146547 20 Apr 2018 23 Apr 2018 17 Oct 2018 17 Oct 2018 27 Apr 2018 BH6 0.6-0.7 SE178319.020 LB146547 23 Apr 2018 17 Oct 2018 17 Oct 2018 20 Apr 2018 27 Apr 2018 BH7 0.2-0.3 SE178319.021 LB146547 20 Apr 2018 23 Apr 2018 17 Oct 2018 27 Apr 2018 17 Oct 2018 BH8M 0.5-0.6 SE178319.022 LB146547 23 Apr 2018 17 Oct 2018 17 Oct 2018 20 Apr 2018 27 Apr 2018 BH9 0.2-0.3 SE178319.025 LB146547 20 Apr 2018 23 Apr 2018 17 Oct 2018 27 Apr 2018 17 Oct 2018 BH9 0.9-1.0 SE178319.026 LB146547 20 Apr 2018 23 Apr 2018 17 Oct 2018 27 Apr 2018 17 Oct 2018 QD1 LB146547 SE178319.027 20 Apr 2018 23 Apr 2018 17 Oct 2018 27 Apr 2018 17 Oct 2018

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN											
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
QR1	SE178319.028	LB146391	20 Apr 2018	23 Apr 2018	17 Oct 2018	26 Apr 2018	17 Oct 2018	26 Apr 2018			

TRH (Total Recoverable Hydrocarbons) in Soil

South State State State State								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M 0.2-0.3	SE178319.001	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018
BH1M 0.6-0.7	SE178319.002	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018
BH2M 0.2-0.3	SE178319.008	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018
BH2M 0.5-0.6	SE178319.009	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018
BH3 0.2-0.3	SE178319.016	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018
BH4 0.2-0.3	SE178319.017	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
BH5 0.3-0.4	SE178319.018	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
BH6 0.3-0.4	SE178319.019	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
BH6 0.6-0.7	SE178319.020	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
BH7 0.2-0.3	SE178319.021	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018
BH8M 0.5-0.6	SE178319.022	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018
BH9 0.2-0.3	SE178319.025	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	01 May 2018
BH9 0.9-1.0	SE178319.026	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
QD1	SE178319.027	LB146373	20 Apr 2018	23 Apr 2018	04 May 2018	24 Apr 2018	03 Jun 2018	30 Apr 2018
TRH (Total Recoverable I	Hydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE178319.028	LB146443	20 Apr 2018	23 Apr 2018	27 Apr 2018	26 Apr 2018	05 Jun 2018	30 Apr 2018

VOC's in Soil							Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M 0.2-0.3	SE178319.001	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH1M 0.6-0.7	SE178319.002	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH2M 0.2-0.3	SE178319.008	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH2M 0.5-0.6	SE178319.009	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH3 0.2-0.3	SE178319.016	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH4 0.2-0.3	SE178319.017	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH5 0.3-0.4	SE178319.018	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH6 0.3-0.4	SE178319.019	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH6 0.6-0.7	SE178319.020	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH7 0.2-0.3	SE178319.021	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH8M 0.5-0.6	SE178319.022	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH9 0.2-0.3	SE178319.025	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH9 0.9-1.0	SE178319.026	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
QD1	SE178319.027	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
TS1	SE178319.029	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
TB1	SE178319.030	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
/OCs in Water							Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE178319.028	LB146370	20 Apr 2018	23 Apr 2018	27 Apr 2018	24 Apr 2018	03 Jun 2018	26 Apr 2018

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Soil

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN4								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M 0.2-0.3	SE178319.001	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH1M 0.6-0.7	SE178319.002	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH2M 0.2-0.3	SE178319.008	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH2M 0.5-0.6	SE178319.009	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH3 0.2-0.3	SE178319.016	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH4 0.2-0.3	SE178319.017	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH5 0.3-0.4	SE178319.018	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH6 0.3-0.4	SE178319.019	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH6 0.6-0.7	SE178319.020	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH7 0.2-0.3	SE178319.021	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH8M 0.5-0.6	SE178319.022	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH9 0.2-0.3	SE178319.025	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
BH9 0.9-1.0	SE178319.026	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
QD1	SE178319.027	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	30 Apr 2018
TS1	SE178319.029	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	01 May 2018
TB1	SE178319.030	LB146528	20 Apr 2018	23 Apr 2018	04 May 2018	27 Apr 2018	06 Jun 2018	01 May 2018
Volatile Petroleum Hydrod	carbons in Water						Method: I	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE178319.028	LB146370	20 Apr 2018	23 Apr 2018	27 Apr 2018	24 Apr 2018	03 Jun 2018	26 Apr 2018

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil				Method: ME	<u> </u>
Parameter	Sample Name	Sample Number	Units	Criteria	Recover
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1M 0.2-0.3	SE178319.001	%	60 - 130%	93
	BH2M 0.2-0.3	SE178319.008	%	60 - 130%	108
	BH3 0.2-0.3	SE178319.016	%	60 - 130%	99
	BH4 0.2-0.3	SE178319.017	%	60 - 130%	111
	BH5 0.3-0.4	SE178319.018	%	60 - 130%	113
	BH6 0.3-0.4	SE178319.019	%	60 - 130%	89
	BH7 0.2-0.3	SE178319.021	%	60 - 130%	109
	BH8M 0.5-0.6	SE178319.022	%	60 - 130%	94
	BH9 0.2-0.3	SE178319.025	%	60 - 130%	81
Pesticides in Soil				Method: ME	-(AU)-[ENV
arameter	Sample Name	Sample Number	Units	Criteria	Recove
fluorobiphenyl (Surrogate)	BH1M 0.2-0.3	SE178319.001	%	60 - 130%	96
	BH2M 0.2-0.3	SE178319.008	%	60 - 130%	90
	BH3 0.2-0.3	SE178319.016	%	60 - 130%	96
	BH4 0.2-0.3	SE178319.017	%	60 - 130%	92
	BH5 0.3-0.4	SE178319.018	%	60 - 130%	98
	BH6 0.3-0.4	SE178319.019	%	60 - 130%	98
	BH7 0.2-0.3	SE178319.021	%	60 - 130%	94
	BH8M 0.5-0.6	SE178319.022	%	60 - 130%	98
	BH9 0.2-0.3	SE178319.025	%	60 - 130%	92
4-p-terphenyl (Surrogate)	BH1M 0.2-0.3	SE178319.001	%	60 - 130%	110
	BH2M 0.2-0.3	SE178319.008	%	60 - 130%	106
	BH3 0.2-0.3	SE178319.016	%	60 - 130%	11(
	BH4 0.2-0.3	SE178319.017	%	60 - 130%	112
	BH5 0.3-0.4	SE178319.018	%	60 - 130%	108
	BH6 0.3-0.4	SE178319.019	%	60 - 130%	11
	BH7 0.2-0.3	SE178319.021	%	60 - 130%	10
	BH8M 0.5-0.6	SE178319.022	%	60 - 130%	106
	BH9 0.2-0.3	SE178319.025	%	60 - 130%	100
H (Polynuclear Aromatic Hydrocarbons) in Soil				Method: ME	-(AU)-IEN\
arameter	Sample Name	Sample Number	Units	Criteria	Recove
-fluorobiphenyl (Surrogate)	BH1M 0.2-0.3	SE178319.001	%	70 - 130%	96
ndorobiphenyi (Surrogate)	BH1M 0.6-0.7	SE178319.001	%	70 - 130%	90
	BH1M 0.0-0.7	SE178319.002	%	70 - 130%	94
	BH2M 0.5-0.6	SE178319.009	%	70 - 130%	96
	BH3 0.2-0.3	SE178319.016	%	70 - 130%	96
	BH4 0.2-0.3	SE178319.017	%	70 - 130%	92
	BH5 0.3-0.4	SE178319.018	%	70 - 130%	98
	BH6 0.3-0.4	SE178319.019	%	70 - 130%	98
	BH6 0.6-0.7	SE178319.020	%	70 - 130%	96
	BH7 0.2-0.3	SE178319.021	%	70 - 130%	94
	BH7 0.2-0.3 BH8M 0.5-0.6	SE178319.021	%	70 - 130%	94
	BH9 0.2-0.3	SE178319.022	%	70 - 130%	98
	BH9 0.2-0.3 BH9 0.9-1.0	SE178319.025	%	70 - 130%	92
14 p tempond (Surrogoto)		SE178319.001	%	70 - 130%	110
I4-p-terphenyl (Surrogate)	BH1M 0.2-0.3	05470240.000	0/	70 4000/	
14-p-terphenyl (Surrogate)	BH1M 0.6-0.7	SE178319.002	%	70 - 130%	
14-p-terphenyl (Surrogate)	BH1M 0.6-0.7 BH2M 0.2-0.3	SE178319.008	%	70 - 130%	106
14-p-terphenyl (Surrogate)	BH1M 0.6-0.7 BH2M 0.2-0.3 BH2M 0.5-0.6	SE178319.008 SE178319.009	%	70 - 130% 70 - 130%	106 106
I4-p-terphenyl (Surrogate)	BH1M 0.6-0.7 BH2M 0.2-0.3 BH2M 0.5-0.6 BH3 0.2-0.3	SE178319.008 SE178319.009 SE178319.016	% % %	70 - 130% 70 - 130% 70 - 130%	100 100 110
14-p-terphenyl (Surrogate)	BH1M 0.6-0.7 BH2M 0.2-0.3 BH2M 0.5-0.6 BH3 0.2-0.3 BH4 0.2-0.3	SE178319.008 SE178319.009 SE178319.016 SE178319.017	% % %	70 - 130% 70 - 130% 70 - 130% 70 - 130%	112 106 106 110 110
14-p-terphenyl (Surrogate)	BH1M 0.6-0.7 BH2M 0.2-0.3 BH2M 0.5-0.6 BH3 0.2-0.3	SE178319.008 SE178319.009 SE178319.016	% % %	70 - 130% 70 - 130% 70 - 130%	106 106 110

BH6 0.6-0.7

BH7 0.2-0.3

BH8M 0.5-0.6

BH9 0.2-0.3

BH9 0.9-1.0

BH1M 0.2-0.3

BH1M 0.6-0.7

BH2M 0.2-0.3

SE178319.020

SE178319.021

SE178319.022

SE178319.025

SE178319.026

SE178319.001

SE178319.002

SE178319.008

d5-nitrobenzene (Surrogate)

114

108

106

100

108

94

92

90

70 - 130%

70 - 130%

70 - 130%

70 - 130%

70 - 130%

70 - 130%

70 - 130%

70 - 130%

%

%

%

%

%

%

%

%

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Recovery % Units Criteria Parameter Sample Name Sample Numb d5-nitrobenzene (Surrogate) BH2M 0.5-0.6 SE178319.009 % 70 - 130% 92 BH3 0.2-0.3 SE178319.016 70 - 130% 92 % BH4 0.2-0.3 SE178319.017 % 70 - 130% 92 BH5 0.3-0.4 SE178319.018 70 - 130% 92 % BH6 0.3-0.4 SE178319.019 70 - 130% 94 % BH6 0.6-0.7 SE178319.020 % 70 - 130% 96 BH7 0.2-0.3 SE178319.021 % 70 - 130% 90 BH8M 0.5-0.6 SE178319.022 % 70 - 130% 94 BH9 0.2-0.3 SE178319.025 % 70 - 130% 90 BH9 0.9-1.0 SE178319.026 70 - 130% 94 % PCBs in Soi Method: ME-(AU)-[ENV]AN420 Sample Name Sample Numl Units Criteria Recovery % Parameter Tetrachloro-m-xylene (TCMX) (Surrogate) BH1M 0.2-0.3 SE178319.001 % 60 - 130% 93 BH2M 0.2-0.3 SE178319.008 % 60 - 130% 108 BH3 0.2-0.3 SE178319.016 60 - 130% 99 % BH4 0.2-0.3 SE178319.017 % 60 - 130% 111 BH5 0.3-0.4 SE178319.018 60 - 130% 113 % BH6 0.3-0.4 SE178319.019 60 - 130% 89 % BH7 0.2-0.3 SE178319.021 % 60 - 130% 109 BH8M 0.5-0.6 SE178319.022 60 - 130% 94 % BH9 0.2-0.3 SE178319.025 60 - 130% % 81 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Units Parameter Sample Name Sample Number Criteria Recovery % Bromofluorobenzene (Surrogate) BH1M 0.2-0.3 SE178319.001 60 - 130% 95 BH1M 0.6-0.7 SE178319.002 % 60 - 130% 76 BH2M 0.2-0.3 SE178319.008 % 60 - 130% 89 BH2M 0.5-0.6 SE178319.009 81 % 60 - 130% BH3 0.2-0.3 SE178319.016 60 - 130% 94 % BH4 0.2-0.3 SE178319.017 % 60 - 130% 74 BH5 0.3-0.4 SE178319.018 % 60 - 130% 77 BH6 0.3-0.4 SE178319.019 60 - 130% 83 % BH6 0 6-0 7 SE178319 020 % 60 - 130% 86 SE178319.021 BH7 0.2-0.3 % 60 - 130% 81 BH8M 0.5-0.6 SE178319.022 60 - 130% 78 % BH9 0.2-0.3 SE178319.025 % 60 - 130% 78 BH9 0.9-1.0 SE178319.026 60 - 130% 72 % QD1 SE178319.027 60 - 130% % 75 TS1 SE178319.029 % 60 - 130% 80 TB1 SE178319.030 60 - 130% 86 % d4-1,2-dichloroethane (Surrogate) BH1M 0.2-0.3 SE178319.001 60 - 130% % 79 BH1M 0.6-0.7 SE178319.002 % 60 - 130% 86 BH2M 0.2-0.3 SE178319.008 60 - 130% 89 % BH2M 0.5-0.6 SE178319.009 60 - 130% 74 % BH3 0.2-0.3 SE178319.016 % 60 - 130% 72 BH4 0.2-0.3 SE178319.017 % 60 - 130% 81 BH5 0.3-0.4 SE178319.018 % 60 - 130% 85 BH6 0.3-0.4 SE178319.019 % 60 - 130% 82 BH6 0.6-0.7 SE178319.020 % 60 - 130% 101 BH7 0.2-0.3 SE178319.021 60 - 130% 82 % BH8M 0.5-0.6 SE178319.022 % 60 - 130% 77 BH9 0.2-0.3 SE178319.025 74 % 60 - 130% BH9 0.9-1.0 60 - 130% SE178319.026 % 77 QD1 SE178319.027 % 60 - 130% 73 TS1 SE178319.029 60 - 130% 75 % TB1 SE178319.030 60 - 130% 74 % d8-toluene (Surrogate) BH1M 0.2-0.3 SE178319.001 % 60 - 130% 77 BH1M 0.6-0.7 SE178319.002 % 60 - 130% 116 BH2M 0.2-0.3 SE178319.008 % 60 - 130% 89 BH2M 0.5-0.6 SE178319.009 % 60 - 130% 104 BH3 0.2-0.3 SE178319.016 60 - 130% % 94

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

OC's in Soil (continued)				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery S
d8-toluene (Surrogate)	BH4 0.2-0.3	SE178319.017	%	60 - 130%	117
	BH5 0.3-0.4	SE178319.018	%	60 - 130%	110
	BH6 0.3-0.4	SE178319.019	%	60 - 130%	102
	BH6 0.6-0.7	SE178319.020	%	60 - 130%	119
	BH7 0.2-0.3	SE178319.021	%	60 - 130%	117
	BH8M 0.5-0.6	SE178319.022	%	60 - 130%	100
	BH9 0.2-0.3	SE178319.025	%	60 - 130%	114
	BH9 0.9-1.0	SE178319.026	%	60 - 130%	115
	QD1	SE178319.027	%	60 - 130%	114
	TS1	SE178319.029	%	60 - 130%	112
	TB1	SE178319.030	%	60 - 130%	117
Dibromofluoromethane (Surrogate)	BH1M 0.2-0.3	SE178319.001	%	60 - 130%	93
	BH1M 0.6-0.7	SE178319.002	%	60 - 130%	77
	BH2M 0.2-0.3	SE178319.008	%	60 - 130%	91
	BH2M 0.5-0.6	SE178319.009	%	60 - 130%	79
	BH3 0.2-0.3	SE178319.016	%	60 - 130%	92
	BH4 0.2-0.3	SE178319.017	%	60 - 130%	99
	BH5 0.3-0.4	SE178319.018	%	60 - 130%	91
	BH6 0.3-0.4	SE178319.019	%	60 - 130%	73
	BH6 0.6-0.7	SE178319.020	%	60 - 130%	90
	BH7 0.2-0.3	SE178319.021	%	60 - 130%	85
	BH8M 0.5-0.6	SE178319.022	%	60 - 130%	74
	BH9 0.2-0.3	SE178319.025	%	60 - 130%	80
	BH9 0.9-1.0	SE178319.026	%	60 - 130%	88
	QD1	SE178319.027	%	60 - 130%	74
	TS1	SE178319.029	%	60 - 130%	82
	TB1	SE178319.030	%	60 - 130%	89
OCs in Water				Method: ME	-(AU)-[ENV]/
Parameter	Sample Name	Sample Number	Units	Criteria	
	-				Recovery
Bromofluorobenzene (Surrogate)	QR1	SE178319.028	%	40 - 130%	79
3romofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate)	QR1 QR1	SE178319.028 SE178319.028	%	40 - 130% 40 - 130%	79 121
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	QR1 QR1 QR1	SE178319.028 SE178319.028 SE178319.028	% % %	40 - 130% 40 - 130% 40 - 130%	79 121 86
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate)	QR1 QR1	SE178319.028 SE178319.028	%	40 - 130% 40 - 130% 40 - 130% 40 - 130%	79 121 86 115
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	QR1 QR1 QR1	SE178319.028 SE178319.028 SE178319.028	% % %	40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: ME	79 121 86 115 (AU)-[ENV]
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soil	QR1 QR1 QR1	SE178319.028 SE178319.028 SE178319.028	% % % Units	40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: ME Criteria	79 121 86 115 (AU)-[ENV] /
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) olatile Petroleum Hydrocarbons in Soil Varameter	QR1 QR1 QR1 QR1 QR1 Sample Name BH1M 0.2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 Sample Number SE178319.001	% % % Units %	40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130%	79 121 86 115
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) olatile Petroleum Hydrocarbons in Soil Varameter	QR1 QR1 QR1 QR1 QR1 Sample Name	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 Sample Number	% % % Units %	40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115 -(AU)-[ENV]/ Recovery
Gromofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate) 18-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soil arameter	QR1 QR1 QR1 QR1 QR1 Sample Name BH1M 0.2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 Sample Number SE178319.001	% % % Units %	40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130%	79 121 86 115 :-(AU)-[ENV] Recovery 95
Gromofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate) 18-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soil arameter	QR1 QR1 QR1 QR1 QR1 Sample Name BH1M 0.2-0.3 BH1M 0.6-0.7	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 Sample Number SE178319.001 SE178319.002	% % % Units %	40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115
Gromofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate) 18-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soil arameter	QR1 QR1 QR1 QR1 BH1M 0.2-0.3 BH1M 0.6-0.7 BH2M 0.2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 Sample Number SE178319.001 SE178319.002 SE178319.008	% % % Units % %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130%	79 121 86 115 -(AU)-[ENV]/ Recover 95 76 89
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soil arameter	QR1 QR1 QR1 QR1 QR1 BH1M 0.2-0.3 BH1M 0.6-0.7 BH2M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.2-0.6	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.002 SE178319.008 SE178319.009	% % % % Units % % %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130%	79 121 86 115 -(AU)-[ENV]/ Recovery 95 76 89 81
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soil arameter	QR1 QR1 QR1 QR1 QR1 BHIM 0.2-0.3 BH1M 0.6-0.7 BH2M 0.2-0.3 BH2M 0.5-0.6 BH3 0.2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.021 SE178319.001 SE178319.002 SE178319.008 SE178319.009 SE178319.016	% % % % Units % % %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	79 121 86 115 (AU)-[ENV]/ Recovery 95 76 89 81 94
Gromofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate) 18-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soil arameter	OR1 QR1 QR1 QR1 QR1 BHIM 0.2-0.3 BH1M 0.6-0.7 BH2M 0.2-0.3 BH2M 0.5-0.6 BH3 0.2-0.3 BH4 0.2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.002 SE178319.008 SE178319.009 SE178319.016 SE178319.017	% % % % Units % % % %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	79 121 86 115
Gromofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate) 18-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soil arameter	OR1 QR1 QR1 QR1 QR1 BH1M 0.2-0.3 BH1M 0.6-0.7 BH2M 0.2-0.3 BH2M 0.5-0.6 BH3 0.2-0.3 BH4 0.2-0.3 BH4 0.2-0.3 BH5 0.3-0.4	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.002 SE178319.008 SE178319.016 SE178319.017 SE178319.018	% % % % % % % % %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	79 121 86 115
Aromofluorobenzene (Surrogate) 44-1,2-dichloroethane (Surrogate) 48-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soll arameter	OR1 QR1 QR1 QR1 QR1 BH1M 0.2-0.3 BH1M 0.6-0.7 BH2M 0.2-0.3 BH2M 0.2-0.3 BH4 0.2-0.3 BH5 0.3-0.4 BH6 0.3-0.4	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.008 SE178319.009 SE178319.016 SE178319.017 SE178319.018 SE178319.019	% % % % % % % % %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soil arameter	OR1 QR1 QR1 QR1 QR1 BH100.2-0.3 BH1M 0.6-0.7 BH2M 0.2-0.3 BH2M 0.5-0.6 BH3 0.2-0.3 BH4 0.2-0.3 BH6 0.3-0.4 BH6 0.3-0.4 BH6 0.6-0.7	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.009 SE178319.019 SE178319.016 SE178319.017 SE178319.018 SE178319.019 SE178319.020	% % % % % % % % % %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soil arameter	QR1 QR1 QR1 QR1 QR1 Sample Name BH1M 0.2-0.3 BH1M 0.6-0.7 BH2M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.2-0.3 BH4 0.2-0.3 BH6 0.3-0.4 BH6 0.6-0.7 BH6 0.6-0.7 BH7 0.2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.002 SE178319.008 SE178319.009 SE178319.016 SE178319.016 SE178319.017 SE178319.018 SE178319.019 SE178319.020 SE178319.021	% % % % % % % % % % %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115
Gromofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate) 18-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soil arameter	QR1 Sample Name BH1M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.5-0.6 BH3 0.2-0.3 BH4 0.2-0.3 BH4 0.2-0.3 BH5 0.3-0.4 BH6 0.6-0.7 BH7 0.2-0.3 BH8 0.5-0.6	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.002 SE178319.008 SE178319.016 SE178319.016 SE178319.017 SE178319.018 SE178319.019 SE178319.020 SE178319.021 SE178319.022	% %	40 - 130% 40 - 130% 40 - 130% Method: ME 60 - 130% 60 - 130%	79 121 86 115 -(AU)-[ENV] Recovery 95 76 89 81 94 74 77 83 86 81 81 78
Aromofluorobenzene (Surrogate) 44-1,2-dichloroethane (Surrogate) 48-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soll arameter	QR1 QR1 QR1 QR1 QR1 QR1 QR1 QR1 Sample Name BH1M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.2-0.3 BH3 0.2-0.3 BH4 0.2-0.3 BH5 0.3-0.4 BH6 0.6-0.7 BH7 0.2-0.3 BH8M 0.5-0.6 BH9 0.2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.008 SE178319.009 SE178319.019 SE178319.018 SE178319.018 SE178319.019 SE178319.020 SE178319.021 SE178319.022 SE178319.025	% %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115 (AU)-[ENV] Recovery 95 76 89 81 94 74 77 83 86 81 83 86 81 78
Bromofluorobenzene (Surrogate) 44-1,2-dichloroethane (Surrogate) 48-toluene (Surrogate) Dibromofluoromethane (Surrogate) Diatile Petroleum Hydrocarbons in Soll arameter Bromofluorobenzene (Surrogate)	QR1 QR1 QR1 QR1 QR1 QR1 QR1 QR1 Sample Name BH1M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.2-0.3 BH3 0.2-0.3 BH4 0.2-0.3 BH5 0.3-0.4 BH6 0.3-0.4 BH6 0.5-0.7 BH7 0.2-0.3 BH8M 0.5-0.6 BH9 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.002 SE178319.008 SE178319.016 SE178319.016 SE178319.016 SE178319.018 SE178319.019 SE178319.020 SE178319.020 SE178319.022 SE178319.025 SE178319.026	% %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115 -(AU)-[ENV] Recovery 95 76 89 81 94 74 74 77 83 83 86 81 78 78 78 78
Bromofluorobenzene (Surrogate) I4-1,2-dichloroethane (Surrogate) I8-toluene (Surrogate) Dibromofluoromethane (Surrogate) Istatile Petroleum Hydrocarbons in Soll arameter Bromofluorobenzene (Surrogate)	QR1 QR1 QR1 QR1 QR1 QR1 QR1 Sample Name BH1M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.5-0.6 BH3 0.2-0.3 BH6 0.5-0.6 BH3 0.2-0.3 BH6 0.3-0.4 BH6 0.3-0.4 BH6 0.5-0.6 BH3 0.2-0.3 BH6 0.5-0.6 BH9 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.10 QD1	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.002 SE178319.009 SE178319.009 SE178319.016 SE178319.016 SE178319.016 SE178319.019 SE178319.019 SE178319.020 SE178319.021 SE178319.022 SE178319.022 SE178319.025 SE178319.026 SE178319.027	% %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115 -(AU)-[ENV]/ Recovery 95 76 89 81 94 74 74 74 83 86 81 81 78 86 81 78 78 78 78
Bromofluorobenzene (Surrogate) 34-1,2-dichloroethane (Surrogate) 38-toluene (Surrogate) Dibromofluoromethane (Surrogate) olatile Petroleum Hydrocarbons in Soil arameter Bromofluorobenzene (Surrogate)	QR1 QR1 QR1 QR1 QR1 QR1 QR1 Sample Name BH1M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.5-0.6 BH3 0.2-0.3 BH4 0.2-0.3 BH5 0.3-0.4 BH6 0.6-0.7 BH7 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH10 0.2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.002 SE178319.009 SE178319.016 SE178319.016 SE178319.016 SE178319.018 SE178319.018 SE178319.020 SE178319.020 SE178319.021 SE178319.022 SE178319.022 SE178319.025 SE178319.026 SE178319.027 SE178319.027 SE178319.001	% %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115 -(AU)-[ENV]/ Recovery 95 76 89 81 94 74 74 74 77 83 86 81 78 86 81 78 78 78 78 78 78 78 79
Bromofluorobenzene (Surrogate) 34-1,2-dichloroethane (Surrogate) 38-toluene (Surrogate) Dibromofluoromethane (Surrogate) olatile Petroleum Hydrocarbons in Soil arameter Bromofluorobenzene (Surrogate)	QR1 Sample Name BH10.2-0.3 BH4 0.2-0.3 BH5 0.3-0.4 BH6 0.6-0.7 BH7 0.2-0.3 BH9 0.9-1.0 QD1 BH10.2-0.3 BH10.0-2-0.3 BH10.0-2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.002 SE178319.009 SE178319.009 SE178319.016 SE178319.016 SE178319.016 SE178319.018 SE178319.021 SE178319.021 SE178319.022 SE178319.022 SE178319.025 SE178319.025 SE178319.026 SE178319.027 SE178319.021 SE178319.021	% %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115 -(AU)-[ENV]/ Recovery 95 76 89 81 94 74 77 83 86 81 77 83 86 81 78 78 78 78 78 78 78 78 78 78 78 78 78
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) olatile Petroleum Hydrocarbons in Soil arameter Bromofluorobenzene (Surrogate)	QR1 Sample Name BH10.2-0.3 BH4 0.2-0.3 BH6 0.3-0.4 BH6 0.3-0.4 BH6 0.6-0.7 BH7 0.2-0.3 BH80 0.5-0.6 BH9 0.2-0.3 BH9 0.9-1.0 QD1 BH1M 0.2-0.3 BH1M 0.2-0.3 BH1M 0.2-0.3 BH1M 0.2-0.3 BH2M 0.2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.021 SE178319.001 SE178319.003 SE178319.009 SE178319.016 SE178319.017 SE178319.018 SE178319.019 SE178319.020 SE178319.021 SE178319.022 SE178319.025 SE178319.026 SE178319.027 SE178319.021 SE178319.021 SE178319.026 SE178319.027 SE178319.027 SE178319.020 SE178319.021 SE178319.021 SE178319.021 SE178319.021 SE178319.026 SE178319.027 SE178319.001 SE178319.002 SE178319.003 SE178319.004 SE178319.009	% %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115 (AU)-[ENV]/ Recover 95 76 89 81 94 74 77 83 86 81 78 78 78 78 78 78 78 78 78 78 78 79 88 81
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) olatile Petroleum Hydrocarbons in Soil arameter Bromofluorobenzene (Surrogate)	QR1 BH10 QR1 BH10.2-0.3 BH80.5-0.6 BH9 0.2-0.3 BH9 0.9-1.0 QD1 BH1M 0.2-0.3 BH1M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.021 SE178319.001 SE178319.003 SE178319.009 SE178319.016 SE178319.017 SE178319.018 SE178319.019 SE178319.020 SE178319.021 SE178319.021 SE178319.025 SE178319.026 SE178319.027 SE178319.001 SE178319.002 SE178319.002 SE178319.001 SE178319.002 SE178319.002 SE178319.001 SE178319.002 SE178319.003 SE178319.004 SE178319.009 SE178319.009 SE178319.016	% %	40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115 -(AU)-[ENV]/ Recover 95 76 89 81 94 74 74 77 83 86 81 78 78 78 78 78 78 78 78 78 79 86 89 74 72
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) olatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	QR1 Sample Name BH1M 0.2-0.3 BH4 0.2-0.3 BH6 0.6-0.7 BH7 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH1M 0.2-0.3 BH1M 0.2-0.3 BH2M 0.2-0.3	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.002 SE178319.008 SE178319.009 SE178319.016 SE178319.017 SE178319.018 SE178319.019 SE178319.021 SE178319.022 SE178319.025 SE178319.026 SE178319.027 SE178319.001 SE178319.002 SE178319.002 SE178319.003 SE178319.004 SE178319.009 SE178319.009 SE178319.009 SE178319.009 SE178319.016 SE178319.017	% %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115 (AU)-[ENV] Recovery 95 76 89 81 74 74 77 83 86 81 78 72 75 88 78 72 75 88 88 81 78 72 75 88 88 81 72 75 86 89 74 74 72 81
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate)	QR1 BH10.20.3 BH4 0.2-0.3 BH5 0.3-0.4 BH6 0.6-0.7 BH7 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH1M 0.2-0.3 BH1M 0.2-0.3 BH1M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.2-0.3 BH3 0.2-0.3 BH4 0.2-0.3 BH4 0.2-0.3 BH5 0.3-0.4	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.002 SE178319.003 SE178319.009 SE178319.016 SE178319.017 SE178319.018 SE178319.020 SE178319.021 SE178319.022 SE178319.025 SE178319.026 SE178319.027 SE178319.028 SE178319.001 SE178319.002 SE178319.003 SE178319.004 SE178319.005 SE178319.007 SE178319.008 SE178319.009 SE178319.009 SE178319.016 SE178319.017 SE178319.018	% %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115 (AU)-[ENV]/ Recovery 95 76 89 81 74 74 77 83 86 81 78 78 78 78 78 78 78 78 78 78 78 78 78
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) olatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	QR1 BH10.20.3 BH4 0.2-0.3 BH6 0.5-0.6 BH9 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH1M 0.2-0.3 BH1M 0.2-0.3 BH1M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.2-0.3 BH3 0.2-0.3 BH4 0.2-0.3 BH4 0.2-0.3 BH5 0.3-0.4 BH6 0.3-0.4	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.002 SE178319.003 SE178319.009 SE178319.016 SE178319.017 SE178319.018 SE178319.020 SE178319.021 SE178319.022 SE178319.025 SE178319.026 SE178319.027 SE178319.020 SE178319.021 SE178319.022 SE178319.025 SE178319.026 SE178319.027 SE178319.028 SE178319.010 SE178319.029 SE178319.001 SE178319.003 SE178319.016 SE178319.016 SE178319.016 SE178319.016 SE178319.017 SE178319.018 SE178319.019	% %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115 CAU)-[ENV]/ Recovery 95 76 89 81 94 74 74 74 83 83 86 81 78 72 75 79 86 89 79 86 89 74 72 75 79
Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) olatile Petroleum Hydrocarbons in Soil Parameter Bromofluorobenzene (Surrogate)	QR1 BH10.20.3 BH4 0.2-0.3 BH5 0.3-0.4 BH6 0.6-0.7 BH7 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH9 0.2-0.3 BH1M 0.2-0.3 BH1M 0.2-0.3 BH1M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.2-0.3 BH2M 0.2-0.3 BH3 0.2-0.3 BH4 0.2-0.3 BH4 0.2-0.3 BH5 0.3-0.4	SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.028 SE178319.001 SE178319.001 SE178319.002 SE178319.003 SE178319.009 SE178319.016 SE178319.017 SE178319.018 SE178319.020 SE178319.021 SE178319.022 SE178319.025 SE178319.026 SE178319.027 SE178319.028 SE178319.001 SE178319.002 SE178319.003 SE178319.004 SE178319.005 SE178319.007 SE178319.008 SE178319.009 SE178319.009 SE178319.016 SE178319.017 SE178319.018	% %	40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 60 - 130% 60 - 130%	79 121 86 115 (AU)-[ENV]/ Recovery 95 76 89 81 74 74 77 83 86 81 78 78 78 78 78 78 78 78 78 78 78 78 78

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Recovery % Sample Name Sample Number Units Criteria Parameter d4-1,2-dichloroethane (Surrogate) BH9 0.2-0.3 SE178319.025 % 60 - 130% 74 BH9 0.9-1.0 SE178319.026 % 60 - 130% 77 QD1 SE178319.027 % 60 - 130% 73 d8-toluene (Surrogate) BH1M 0.2-0.3 SE178319.001 % 60 - 130% 77 BH1M 0.6-0.7 SE178319.002 % 60 - 130% 116 BH2M 0.2-0.3 SE178319.008 % 60 - 130% 89 BH2M 0.5-0.6 SE178319.009 % 60 - 130% 104 BH3 0.2-0.3 60 - 130% 94 SE178319.016 % BH4 0.2-0.3 SE178319.017 % 60 - 130% 117 BH5 0.3-0.4 SE178319.018 % 60 - 130% 110 BH6 0.3-0.4 SE178319.019 60 - 130% % 102 BH6 0.6-0.7 SE178319.020 119 % 60 - 130% BH7 0.2-0.3 SE178319.021 % 60 - 130% 117 BH8M 0.5-0.6 SE178319.022 % 60 - 130% 100 BH9 0.2-0.3 SE178319.025 % 60 - 130% 114 BH9 0.9-1.0 SE178319.026 % 60 - 130% 115 QD1 SE178319.027 % 60 - 130% 114 Dibromofluoromethane (Surrogate) BH1M 0.2-0.3 SE178319.001 % 60 - 130% 93 BH1M 0.6-0.7 SE178319.002 % 60 - 130% 77 BH2M 0.2-0.3 SE178319.008 60 - 130% 91 % BH2M 0.5-0.6 SE178319.009 % 60 - 130% 79 BH3 0.2-0.3 SE178319.016 % 60 - 130% 92 BH4 0.2-0.3 SE178319.017 % 60 - 130% 99 BH5 0.3-0.4 SE178319.018 % 60 - 130% 91 BH6 0 3-0 4 SE178319.019 % 60 - 130% 73 BH6 0.6-0.7 SE178319.020 60 - 130% 90 % BH7 0.2-0.3 SE178319.021 % 60 - 130% 85 BH8M 0.5-0.6 SE178319.022 % 60 - 130% 74 BH9 0.2-0.3 SE178319.025 60 - 130% 80 % BH9 0.9-1.0 SE178319.026 % 60 - 130% 88 QD1 SE178319.027 % 60 - 130% 74 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE178319.028	%	40 - 130%	79
d4-1,2-dichloroethane (Surrogate)	QR1	SE178319.028	%	60 - 130%	121
d8-toluene (Surrogate)	QR1	SE178319.028	%	40 - 130%	86
Dibromofluoromethane (Surrogate)	QR1	SE178319.028	%	40 - 130%	115

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	NVJAN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB146397.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil Method: ME-(AU			ethod: ME-(AU)-[ENV]AN312	
Sample Number	Parameter	Units	LOR	Result
LB146571.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

ple Number	Parameter	Units	LOR	Result
16373.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
0373.001			0.1	<0.1
	Alpha BHC	mg/kg		
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	101

ticidae in Soil

OP Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB146373.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	100
	d14-p-terphenyl (Surrogate)	%	-	116
PAH (Polynuclear Aromatic Hydrocarbons) in Sc	1		Meth	od: ME-(AU)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result
LB146373.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1

Anthracene

<0.1

0.1

mg/kg

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	Result
LB146373.001				0.1	<0.1
_D 1403/ 3.001		Fluoranthene	mg/kg		
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	100
		2-fluorobiphenyl (Surrogate)	%	-	100
		d14-p-terphenyl (Surrogate)	%	-	116
CBs in Soil				Methy	od: ME-(AU)-[ENV]AN
ample Number		Parameter	Units	LOR	Result
B146373.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262		0.2	<0.2
			mg/kg		
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	101
otal Recoverable Ele	ments in Soil/Waste Solids/I	Materials by ICPOES		Method: ME-	(AU)-[ENV]AN040/A
ample Number		Parameter	Units	LOR	Result
B146547.001		Arsenic, As	mg/kg	3	<3
5110011.001		Cadmium, Cd		0.3	<0.3
			mg/kg		
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	0.5	<0.5
race Metals (Dissolve	ed) in Water by ICPMS			Metho	od: ME-(AU)-[ENV]A
ample Number		Parameter	Units	LOR	Result
B146391.001		Arsenic, As	μg/L	1	<1
B140391.001					
		Cadmium, Cd	μg/L	0.1	<0.1
		Chromium, Cr	μg/L	1	<1
		Copper, Cu	μg/L	1	<1
		Lead, Pb	μg/L	1	<1
		Nickel, Ni	μg/L	1	<1
		Zinc, Zn	μg/L	5	<5
RH (Total Recoverab	ole Hydrocarbons) in Soil			Methr	od: ME-(AU)-[ENV]A
ample Number	,	Parameter	Units	LOR	Result
B146373.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
RH (Total Recoverab	ble Hydrocarbons) in Water			Methr	od: ME-(AU)-[ENV]A
ample Number		Parameter	Units	LOR	Result
B146443.001		TRH C10-C14	µg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	μg/L	200	<200
OC's in Soil				Metho	od: ME-(AU)-[ENV]A

SE178319 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (contine	ued)			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB146528.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	76
		d4-1,2-dichloroethane (Surrogate)	%	-	85
		d8-toluene (Surrogate)	%	-	121
		Bromofluorobenzene (Surrogate)	%	-	73
	Totals	Total BTEX	mg/kg	0.6	<0.6
VOCs in Water				Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB146370.001	Monocyclic Aromatic	Benzene	µg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	115
		d4-1,2-dichloroethane (Surrogate)	%	-	126
		d8-toluene (Surrogate)	%	-	90
		Bromofluorobenzene (Surrogate)	%	-	80
Volatile Petroleum Hy	ydrocarbons in Soll			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB146528.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	_	76
		d4-1,2-dichloroethane (Surrogate)	%	_	85
		d8-toluene (Surrogate)	%	_	121
Volatile Petroleum Hy	vdrocarbons in Water			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB146370.001		TRH C6-C9	µg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	115
		d4-1,2-dichloroethane (Surrogate)	%	-	126
		d8-toluene (Surrogate)	%	_	90

Method: ME-(AU)-IENVIAN312

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/Al					erth)/AN312			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178341.002	LB146397.014	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0
SE178341.003	LB146397.016	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0

Mercury in Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178319.020	LB146571.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE178319.027	LB146571.020	Mercury	mg/kg	0.05	0.09	0.14	74	39

Moisture Content							Meth	od: ME-(AU)-	ENVJAN002
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178319.021	LB146659.011		% Moisture	%w/w	0.5	15	12	37	25
SE178388.005	LB146659.022		% Moisture	%w/w	0.5	8.7	8.3	42	4
SE178442.001	LB146659.033		% Moisture	%w/w	0.5	28	27	34	4
SE178442.008	LB146659.041		% Moisture	%w/w	0.5	17	17	36	1
OC Pesticides in S	oil						Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178319.008	LB146373.027		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0.16	0.157	30	3
SE178319.017	LB146373.026	ounogates	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0.157	200	0
SE 170318.017	LD 140373.020		Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane		0.1	<0.1	0	200	0
			Heptachlor	mg/kg mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC		0.1	<0.1	0	200	0
			Delta BHC	mg/kg mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan		0.1	<0.1	0	200	0
			Gamma Chlordane	mg/kg mg/kg	0.2	<0.2	0	200	0
			Alpha Chlordane		0.1	<0.1	0	200	0
				mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	U	200	U

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Soil (continued)		Devenue	11-14-	LOD	Originat	Dunlingt	Criteria 06	000.04
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE178319.017	LB146373.026		p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
							0	200	0
			Isodrin	mg/kg	0.1	<0.1			
			Mirex	mg/kg	0.1	<0.1	0	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.156	30	7
OP Pesticides in S	Soil						Meth	od: ME-(AU)-	[ENV]AN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178319.008	LB146373.027		Dichlorvos		0.5	<0.5	0	200	0
SE 1703 18.000	LD 1403/3.02/			mg/kg					
			Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0	200	0
			Fenitrothion	mg/kg	0.2	<0.2	0	200	0
			Malathion	mg/kg	0.2	<0.2	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.03	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0.02	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0.06	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.49	30	9
		Ŭ	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.55	30	4
SE178319.017	LB146373.026		Dichlorvos	mg/kg	0.5	<0.5	0	200	0
02110010.011	201100101020		Dimethoate	mg/kg	0.5	<0.5	0	200	0
				mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)						
			Fenitrothion	mg/kg	0.2	<0.2	0	200	0
			Malathion	mg/kg	0.2	<0.2	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.49	30	6
		-	d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.57	30	2
	LB146373.028		Dichlorvos	mg/kg	0.5	<0.5	0	200	0
			Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0	200	0
			Fenitrothion		0.5	<0.5	0	200	0
				mg/kg					
			Malathion	mg/kg	0.2	<0.2	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.49	30	6

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

OP Pesticides in S	Soil (continued)						Meth	od: ME-(AU)-	[ENV]AN42
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE178319.017	LB146373.029		Dichlorvos	mg/kg	0.5	<0.5	0	200	0
02110010.011	20140010.020		Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0	200	0
			Fenitrothion			<0.2	0	200	0
				mg/kg	0.2				
			Malathion	mg/kg	0.2	<0.2	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.49	30	6
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.57	30	2
PAH (Polynuclear	Aromatic Hydrocarb	ons) in Soil					Meth	nod: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE178319.008	LB146373.027		Naphthalene	mg/kg	0.1	<0.1	0.02	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0.01	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0.01	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0.06	197	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0.01	200	0
			Phenanthrene	mg/kg	0.1	0.2	0.23	77	14
			Anthracene	mg/kg	0.1	<0.1	0.05	200	0
			Fluoranthene	mg/kg	0.1	0.3	0.32	63	10
			Pyrene	mg/kg	0.1	0.4	0.32	55	10
			Benzo(a)anthracene	mg/kg	0.1	0.2	0.22	79	15
			Chrysene	mg/kg	0.1	0.2	0.21	80	10
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	0.21	81	15
			Benzo(k)fluoranthene	mg/kg	0.1	0.1	0.12	117	9
			Benzo(a)pyrene	mg/kg	0.1	0.2	0.22	78	10
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.2	0.17	93	13
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.02	200	0
			Benzo(ghi)perylene	mg/kg	0.1	0.1	0.16	97	13
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td>0.2957</td><td>81</td><td>10</td></lor=0<>	TEQ (mg/kg)	0.2	0.3	0.2957	81	10
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.4</td><td>0.3957</td><td>89</td><td>7</td></lor=lor<>	TEQ (mg/kg)	0.3	0.4	0.3957	89	7
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td>0.3457</td><td>70</td><td>9</td></lor=lor>	TEQ (mg/kg)	0.2	0.3	0.3457	70	9
			Total PAH (18)	mg/kg	0.8	2.0	2.29	67	12
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	_	0.5	0.46	30	2
		ounogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.49	30	9
						0.5	0.45	30	4
05470040.047	1 04 400 70 000		d14-p-terphenyl (Surrogate)	mg/kg					
SE178319.017	LB146373.026		Naphthalene	mg/kg	0.1	<0.1	0	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0.02	200	0
			Anthracene	mg/kg	0.1	<0.1	0.02	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0.02	200	0
			Pyrene	mg/kg	0.1	<0.1	0.02	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.01	200	0
			Chrysene	mg/kg	0.1	<0.1	0.01	200	0
			Onlyache		0.1	<0.1	0.02	200	
			Denne/h 9 i)(), exemple and						0
			Benzo(b&j)fluoranthene	mg/kg					
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.02	200	0
									0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.02	200	
			Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	0.02 0.01	200 200	0
			Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	0.02 0.01 0	200 200 200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

	Duplicate	ons) in Soil (contin		Units	LOR	Original		nod: ME-(AU)-	RPD ^o
Original			Parameter			Original	Duplicate		
SE178319.017	LB146373.026		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.47	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.49	30	6
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.57	30	2
CBs in Soil							Meth	nod: ME-(AU)-	[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE178319.008	LB146373.026		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0	0.157	30	3
SE178319.017	LB146373.027	Surrogates	Arochlor 1016	mg/kg	0.2	<0.2	0.157	200	0
50170319.017	LB140373.027						0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2			
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	C
			Arochlor 1262		0.2	<0.2	0	200	0
				mg/kg	0.2	-0.2	•		
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
									0
		Surrogates	Arochlor 1268	mg/kg	0.2	<0.2	0	200	
otal Recoverable	Elements in Soil/Wa		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg	0.2 1	<0.2 <1	0 0 0.156	200 200	0 0 7
			Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES	mg/kg mg/kg	0.2 1	<0.2 <1 0	0 0 0.156 Method: ME	200 200 30 	0 0 7
Original	Duplicate		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter	mg/kg mg/kg mg/kg Units	0.2 1 -	<0.2 <1 0 Original	0 0 0.156 Method: ME Duplicate	200 200 30 -(AU)-[ENV]A Criteria %	0 0 7 N040// RPC
			Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As	mg/kg mg/kg mg/kg Units mg/kg	0.2 1 - LOR 3	<0.2 <1 0 Original 6	0 0.156 Method: ME Duplicate 5	200 200 30 Criteria % 49	0 0 7 N040/A RPD
Original	Duplicate		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd	mg/kg mg/kg mg/kg Units mg/kg mg/kg	0.2 1 - LOR 3 0.3	<0.2 <1 0 Original 6 <0.3	0 0 0.156 Method: ME Duplicate 5 <0.3	200 200 30 -(AU)-[ENV]A Criteria % 49 200	0 0 7 N040/A RPE 1 ⁴ 0
Original	Duplicate		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg	0.2 1 - LOR 3 0.3 0.3	<0.2 <1 0 Original 6 <0.3 11	0 0.156 Method: ME Duplicate 5 <0.3 8.0	200 200 30 -(AU)-[ENV]A Criteria % 49 200 35	0 0 7 N040// RPE 14 0 3
Driginal	Duplicate		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg	0.2 1 - LOR 3 0.3 0.3 0.5	<0.2 <1 0 Original 6 <0.3 11 8.5	0 0.156 Method: ME Duplicate 5 <0.3 8.0 12	200 200 30 (AU)-[ENV]A Criteria % 49 200 35 35	0 0 7 NO40/A RPI 14 0 3 3 3
Driginal	Duplicate		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 1 - 3 0.3 0.3 0.5 0.5	<0.2 <1 0 Original 6 <0.3 11 8.5 2.5	0 0.156 Method: ME Duplicate 5 <0.3 8.0 12 2.7	200 200 30 (AU)-[ENV]A Criteria % 49 200 35 35 35 49	0 0 7 NO40// RPI 14 0 3 3 38
Original	Duplicate		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 1 - LOR 3 0.3 0.3 0.5 0.5 1	<0.2 <1 0 0 0 0 0 1 0 3 11 8.5 2.5 56	0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93	200 200 30 Criteria % 49 200 35 35 49 31	0 0 7 NO40/A RPE 14 0 3 3 3 (8 8 49
Driginal 3E178319.016	Duplicate LB146547.014		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 1 - 3 0.3 0.3 0.5 0.5 1 0.5	<0.2 <1 0 0 0 0 0 1 0 3 11 8.5 2.5 56 50	0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87	200 200 30 Criteria % 49 200 35 35 35 49 31 33	0 0 7 N040/ / RPE 1 4 3 3 3 6 8 49 55
Driginal SE178319.016	Duplicate		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 1 - 3 0.3 0.3 0.5 0.5 1 0.5 1 0.5 3	<0.2 <1 0 0 0 0 0 0 0 0 3 11 8.5 2.5 56 50 5 5	0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6	200 200 30 Criteria % 49 200 35 35 49 31 33 48	0 0 7 NO40/A 14 0 3 3 3 3 (8 8 49 55 9
Driginal 3E178319.016	Duplicate LB146547.014		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 1 - 3 0.3 0.3 0.3 0.5 0.5 1 0.5 1 0.5 3 0.3	<0.2 <1 0 0 0 0 0 0 1 1 8.5 2.5 56 50 5 5 <0.3	0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3	200 200 30 Criteria % 49 200 35 35 35 49 31 33 48 48	0 0 7 NO40/A 14 0 3 3 3 3 (8 8 49 55 9 9 0
Driginal SE178319.016	Duplicate LB146547.014		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 1 - 3 0.3 0.3 0.5 0.5 1 0.5 1 0.5 3	<0.2 <1 0 0 0 0 0 0 0 0 3 11 8.5 2.5 56 50 5 5	0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6	200 200 30 Criteria % 49 200 35 35 49 31 33 48	0 0 7 NO40/A 14 0 3 3 3 3 (8 8 49 55 9 9 0
Driginal 3E178319.016	Duplicate LB146547.014		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 1 - 3 0.3 0.3 0.3 0.5 0.5 1 0.5 1 0.5 3 0.3	<0.2 <1 0 0 0 0 0 0 1 1 8.5 2.5 56 50 5 5 <0.3	0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3	200 200 30 Criteria % 49 200 35 35 35 49 31 33 48 48	00000000000000000000000000000000000000
Driginal SE178319.016	Duplicate LB146547.014		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 1 - 3 0.3 0.3 0.3 0.5 0.5 1 0.5 1 0.5 3 0.3 0.3	<0.2 <1 0 0 0 0 0 0 0 1 1 8.5 2.5 56 50 5 5 3 0 3 18	0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 87 6 37 6	200 200 30 Criteria % 49 200 35 35 35 49 31 33 48 167 33	00000000000000000000000000000000000000
Original	Duplicate LB146547.014		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 1 - LOR 3 0.3 0.3 0.5 0.5 1 0.5 3 0.3 0.3 0.3 0.3 0.5 5 1 0.5 3 0.3 0.5 0.5 1 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.2 <1 0 0 0 0 0 0 1 0 1 1 8.5 2.5 5 6 50 5 5 5 0 5 5 <0.3 18 25	0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 87 6 <0.3	200 200 30 Criteria % 49 200 35 35 35 49 31 33 31 33 48 167 33 32	0 0 7 N040/ 1 4 0 3 3 3 8 49 55 9 0 0 9 0 0 9 1
Driginal 3E178319.016	Duplicate LB146547.014		Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg Units mg/kg	0.2 1 - LOR 3 0.3 0.3 0.5 0.5 1 0.5 3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.2 <1 0 0 0 0 0 1 1 8.5 2.5 56 50 5 5 <0.3 18 25 11	0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 87 6 <0.3 16 <25 12	200 200 30 :-(AU)-[ENV]A 49 200 35 35 35 49 31 31 33 48 167 33 32 34	C C C C C C C C C C C C C C C C C C C
Driginal SE178319.016	Duplicate LB146547.014 LB146547.024	ste Solids/Materia	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 1 - LOR 3 0.3 0.3 0.5 0.5 1 0.5 1 0.3 0.3 0.3 0.3 0.3 0.5 1 1 1	<0.2 <1 0 0 6 <0.3 11 8.5 2.5 56 50 5 5 50 5 5 50 5 5 50 3 18 25 11 1260	0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 16 <0.3 16 25 12 310 220	200 200 30 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal SE178319.016 SE178319.027	Duplicate LB146547.014 LB146547.024	ste Solids/Materia	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg	0.2 1 - LOR 3 0.3 0.3 0.5 0.5 1 0.5 3 0.3 0.3 0.3 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.2 <1 0 0 0 0 1 1 8.5 2.5 56 50 5 50 5 50 5 50 5 5 2.5 56 50 5 2.5 56 50 25 50 25 25 25 25 25 25 25	0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 87 6 <0.3 16 25 12 310 220 Meth	200 200 30 Criteria % 49 200 35 35 35 49 31 33 48 167 33 32 34 30 31 30 31 mod: ME-(AU)-	0 0 7 7 7 8 8 8 8 8 8 8 8 9 9 0 0 9 9 9 9 9 9 1 1 8 2 2 2 2 4
Driginal SE178319.016 SE178319.027 SE178319.027 Driginal	Duplicate LB146547.014 LB146547.024 LB146547.024 Solved) in Water by IC Duplicate	ste Solids/Materia	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg	0.2 1 - LOR 3 0.3 0.3 0.5 0.5 1 0.5 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.2 <1 0 0 0 11 8.5 2.5 56 50 5 5 50 5 5 3 18 25 11 260 220 Original	0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 87 6 <0.3 16 25 12 310 220 Meth Duplicate	200 200 30 Criteria % 49 200 35 35 35 49 31 33 48 167 33 32 34 30 31 30 31 mod: ME-(AU)- Criteria %	0 0 7 7 7 8 8 8 8 8 8 8 8 8 8 9 9 0 0 0 9 9 9 9 1 1 1 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Driginal SE178319.016 SE178319.027 SE178319.027 Driginal	Duplicate LB146547.014 LB146547.024	ste Solids/Materia	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Nickel, Ni Lead, Pb Zinc, Zn Nickel, Ni Lead, Pb Zinc, Zn Parameter Arsenic, As	mg/kg	0.2 1 - LOR 3 0.3 0.5 0.5 1 0.5 1 0.5 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 1 0.3 0.3 0.3 0.3 0.5 1 1 0.5 1 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.2 <1 0 0 0 11 8.5 2.5 56 50 5 5 50 5 5 50 5 5 2.5 56 50 5 5 2.5 56 50 5 20 3 11 260 220 220 Original 220 220 220 220 220 220 220 220 220 22	0 0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 5 <0.3 16 <0.3 16 25 12 310 220 Meth Duplicate 3	200 200 30 -(AU)-[ENV]A 49 200 35 35 49 31 33 48 167 33 32 34 30 31 32 34 30 31 100: ME-(AU)- Criteria % 56	0 0 7 7 7 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9
Driginal SE178319.016 SE178319.027 SE178319.027 Driginal	Duplicate LB146547.014 LB146547.024 LB146547.024 Solved) in Water by IC Duplicate	ste Solids/Materia	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Pho Zinc, Zn Nickel, Ni Lead, Pb Zinc, Zn Nickel, Ni Lead, Pb Zinc, Zn Nickel, Ni Lead, Pb Zinc, Zn Parameter Arsenic, As Cadmium, Cd	mg/kg	0.2 1 - LOR 3 0.3 0.5 0.5 1 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 0.5 1 0.5 1 1	<0.2 <1 0 0 0 11 8.5 2.5 56 50 5 5 50 5 5 50 5 5 50 5 5 2.5 56 50 5 5 20 3 18 25 11 260 220 Original 0 Original 22 Original 24 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 16 <0.3 16 25 12 310 220 Meth Duplicate 3 <0.1	200 200 30 -(AU)-[ENV]A 49 200 35 35 49 31 33 48 167 33 32 34 33 32 34 30 31 32 34 30 31 100: ME-(AU)- Criteria % 56 200	0 0 7 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Driginal SE178319.016 SE178319.027 SE178319.027 Prace Metals (Diss Driginal	Duplicate LB146547.014 LB146547.024 LB146547.024 Solved) in Water by IC Duplicate	ste Solids/Materia	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Arsenic, As Cadmium, Cd Chromium, Cr Cadmium, Cd Chromium, Cr	mg/kg mg/kg<	0.2 1 - LOR 3 0.3 0.5 0.5 1 0.5 1 0.5 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.3 0.3 0.3 0.5 0.5 1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1	<0.2 <1 0 0 0 11 8.5 2.5 56 50 5 5 50 5 5 50 5 5 50 5 5 50 5 5	0 0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 16 25 12 310 220 Meth Duplicate 3 <0.1 <1	200 200 30 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal SE178319.016 SE178319.027 SE178319.027 Prace Metals (Diss Driginal	Duplicate LB146547.014 LB146547.024 LB146547.024 Solved) in Water by IC Duplicate	ste Solids/Materia	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Nickel, Ni Lead, Pb Zinc, Zn Nickel, Ni Lead, Pb Zinc, Zn Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg<	0.2 1 - LOR 3 0.3 0.5 0.5 1 0.5 3 0.3 0.3 0.3 0.5 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.3 0.3 0.5 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1	<0.2 <1 0 0 0 11 8.5 2.5 56 50 5 5 <0.3 18 25 11 260 220 220 Original 220 Original 21 24 20 220	0 0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 16 25 12 310 220 Meth Duplicate 3 <0.1 <1 <1	200 200 30 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal SE178319.016 SE178319.027 SE178319.027 Prace Metals (Diss Driginal	Duplicate LB146547.014 LB146547.024 LB146547.024 Solved) in Water by IC Duplicate	ste Solids/Materia	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Zinc, Zh	mg/kg mg/kg<	0.2 1 - LOR 3 0.3 0.3 0.5 0.5 1 0.5 3 0.3 0.3 0.3 0.5 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.3 0.3 0.3 0.5 0.5 1 1 0.5 1 0.5 1 1 0.1 1 1 1 1 1 1 1 1 1 1 1	<0.2 <1 0 0 0 11 8.5 2.5 56 50 5 5 <0.3 18 25 11 260 220 220 Original 2 2 Original 3 4 3 4 11 2 5 5 4 3 11 2 5 5 5 5 4 3 11 2 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 16 25 12 310 220 Meth Duplicate 3 <0.1 <1 <1	200 200 30 Criteria % 49 200 35 35 49 31 33 48 167 33 32 34 33 32 34 30 31 33 2 34 56 200 157 200 200	C C C C C C C C C C C C C C C C C C C
Driginal SE178319.016	Duplicate LB146547.014 LB146547.024 LB146547.024 Solved) in Water by IC Duplicate	ste Solids/Materia	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Zinc, Zn	mg/kg mg/kg<	0.2 1 - LOR 3 0.3 0.3 0.5 0.5 1 0.5 3 0.3 0.3 0.3 0.3 0.5 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.3 0.3 0.3 0.5 1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1	<0.2 <1 0 0 0 11 8.5 2.5 56 50 5 3 0.3 18 25 11 260 220 220 0 0 0 0 0 18 25 11 2 20 20 0 18 25 11 2 20 20 0 11 2 20 20 11 2 20 20 11 2 20 20 11 20 20 20 11 20 20 20 11 20 20 20 20 20 20 20 20 20 20 20 20 20	0 0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 16 25 12 310 220 Meth Duplicate 3 <0.1 <1 <1 <1	200 200 30 Criteria % 49 200 35 35 49 31 33 48 167 33 32 34 30 31 33 2 34 5 6 7 7 8 6 7 7 8 7 8 7 8 7 7 8 7 8 7 8 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal SE178319.016 SE178319.027 SE178319.027 Face Metals (Disc Driginal SE178341.001	Duplicate LB146547.014 LB146547.024 LB146547.024 Solved) in Water by IC Duplicate LB146391.014	ste Solids/Materia	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Zinc, Zn Nickel, Ni Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg<	0.2 1 -	<0.2 <1 0 0 0 11 8.5 2.5 56 50 5 <0.3 18 25 11 260 220 0 0 riginal 2 2 <0.1 <1 <1 <1 <1 <1 <1 21	0 0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 16 <0.3 16 <25 12 310 220 Meth Duplicate 3 <0.1 <1 <1 <1 <1 <1 <1	200 200 30 Criteria % 49 200 35 35 49 31 33 48 167 33 32 34 30 31 32 34 30 31 Criteria % 56 200 157 200 157 200 200 200	0 0 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9
Driginal SE178319.016 SE178319.027 SE178319.027 Driginal	Duplicate LB146547.014 LB146547.024 LB146547.024 Solved) in Water by IC Duplicate	ste Solids/Materia	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Zinc, Zn	mg/kg mg/kg<	0.2 1 - LOR 3 0.3 0.3 0.5 0.5 1 0.5 3 0.3 0.3 0.3 0.3 0.5 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.3 0.3 0.3 0.5 1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1	<0.2 <1 0 0 0 11 8.5 2.5 56 50 5 3 0.3 18 25 11 260 220 220 0 0 0 0 0 18 25 11 2 20 20 0 18 25 11 2 20 20 0 11 2 20 20 11 2 20 20 11 2 20 20 11 20 20 20 11 20 20 20 11 20 20 20 20 20 20 20 20 20 20 20 20 20	0 0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 16 25 12 310 220 Meth Duplicate 3 <0.1 <1 <1 <1	200 200 30 Criteria % 49 200 35 35 49 31 33 48 167 33 32 34 30 31 33 2 34 5 6 7 7 8 6 7 7 8 7 8 7 8 7 7 8 7 8 7 8 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal SE178319.016 SE178319.027 SE178319.027 SE178341.001	Duplicate LB146547.014 LB146547.024 LB146547.024 Solved) in Water by IC Duplicate LB146391.014	ste Solids/Materia	Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) is by ICPOES Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Zinc, Zn Nickel, Ni Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg<	0.2 1 -	<0.2 <1 0 0 0 11 8.5 2.5 56 50 5 <0.3 18 25 11 260 220 0 0 riginal 2 2 <0.1 <1 <1 <1 <1 <1 <1 21	0 0 0.156 Method: ME 5 <0.3 8.0 12 2.7 93 87 6 <0.3 16 <0.3 16 <25 12 310 220 Meth Duplicate 3 <0.1 <1 <1 <1 <1 <1 <1	200 200 30 Criteria % 49 200 35 35 49 31 33 48 167 33 32 34 30 31 32 34 30 31 Criteria % 56 200 157 200 157 200 200 200 41	C C C C C C C C C C C C C C C C C C C

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

		• •							-[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	
SE178341.003	LB146391.017		Lead, Pb	µg/L	1	<1	<1	200	0
			Nickel, Ni	µg/L	1	<1	<1	200	0
			Zinc, Zn	µg/L	5	12	12	58	1
RH (Total Recov	erable Hydrocarbons) in Soil					Meth	od: ME-(AU)	-[ENV]AI
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE178319.008	LB146373.026		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE178319.017	LB146373.025		TRH C10-C14	mg/kg	20	<20	0	200	0
SE170313.017	LD140070.020		TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C23-C30	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110 <210	0	200	0
		TOULE Date de	TRH C10-C40 Total (F bands)	mg/kg	210				
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
	LB146373.027		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
RH (Total Recov	erable Hydrocarbons) in Water					Meth	od: ME-(AU)	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE178356.037	LB146443.015		TRH C10-C14	μg/L	50	<50	0	200	0
5E110000.001	20140440.010		TRH C15-C28	μg/L	200	<200	0	200	0
			TRH C29-C36		200	<200	0	200	0
				μg/L				200	0
			TRH C37-C40	µg/L	200	<200	0		
			TRH C10-C36	μg/L	450	<450	0	200	0
			TRH C10-C40	μg/L	650	<650	0	200	0
		TRH F Bands	TRH >C10-C16	μg/L	60	<60	0	200	0
			TRH >C16-C34 (F3)	μg/L	500	<500	0	200	0
			TRH >C34-C40 (F4)	µg/L	500	<500	0	200	0
OC's in Soil							Meth	od: ME-(AU)	-[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE178319.021	LB146528.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.3	4.3	50	0
		ogut00	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.3	50	2
			d8-toluene (Surrogate)	mg/kg	-	5.9	6.0	50	2
			Bromofluorobenzene (Surrogate)	mg/kg		4.0	3.9	50	3
					-				

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

'OC's in Soil (cor	tinued)						Meth	nod: ME-(AU)-	(ENVJAN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178319.021	LB146528.014	Totals	Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE178319.027	LB146528.022	Monocyclic	Benzene	mg/kg	0.1	<0.1	0.01	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	0.01	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	0	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0	200	0
			o-xylene	mg/kg	0.1	<0.1	0	200	0
		Bolyoyolio	Naphthalene		0.1	<0.1	0.01	200	0
		Polycyclic	Dibromofluoromethane (Surrogate)	mg/kg	-				4
		Surrogates		mg/kg		3.7	3.89	50	
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.6	3.84	50	5
			d8-toluene (Surrogate)	mg/kg	-	5.7	5.87	50	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.7	3.85	50	3
		Totals	Total Xylenes	mg/kg	0.3	<0.3	0	200	0
			Total BTEX	mg/kg	0.6	<0.6	0.02	200	0
OCs in Water							Meth	nod: ME-(AU)-	(ENVJAI
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E178222.001	LB146370.020	Monocyclic	Benzene	µg/L	0.5	0.03	0.04	200	0
		Aromatic	Toluene	µg/L	0.5	0.01	0.03	200	0
			Ethylbenzene	μg/L	0.5	0.01	0.01	200	0
			m/p-xylene	μg/L	1	0.01	0.01	200	0
			o-xylene	μg/L	0.5	0.01	0.01	200	0
		Polycyclic	Naphthalene	μg/L	0.5	0.02	0.02	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	3.9	5.07	30	26
		Sunogates				4.47	5.55	30	
			d4-1,2-dichloroethane (Surrogate)	μg/L	-				22
			d8-toluene (Surrogate)	μg/L	-	4.09	4.13	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	3.79	4.3	30	13
E178319.028	LB146370.021	Monocyclic	Benzene	µg/L	0.5	<0.5	0.04	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	0.12	200	0
			Ethylbenzene	µg/L	0.5	<0.5	0.01	200	0
			m/p-xylene	µg/L	1	<1	0.01	200	0
			o-xylene	μg/L	0.5	<0.5	0.01	200	0
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	0.02	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.8	5.53	30	4
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	6.1	5.57	30	8
			d8-toluene (Surrogate)	µg/L	-	4.3	4.17	30	3
			Bromofluorobenzene (Surrogate)	μg/L	-	3.9	3.94	30	0
olatile Petroleum	Hydrocarbons in Soi	1					Meth	nod: ME-(AU)-	(ENV)A
Driginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
E178319.021	LB146528.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
2110010.021	20140020.014		TRH C6-C9		20	<20	<20	200	0
		0		mg/kg					0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.3	4.3	30	
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.2	30	2
			d8-toluene (Surrogate)	mg/kg	-	5.9	6.0	30	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.0	3.9	30	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
E178319.027	LB146528.022		TRH C6-C10	mg/kg	25	<25	1.24	200	0
			TRH C6-C9	mg/kg	20	<20	0.73	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	3.89	30	4
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.6	3.84	30	5
			d8-toluene (Surrogate)	mg/kg	-	5.7	5.87	30	3
			do toldene (ourrogate)		-	3.7	3.85		3
				mg/kg			0.00	30	
		VPH F Bands	Bromofluorobenzene (Surrogate)	mg/kg mg/kg					0
		VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0)	mg/kg	0.1	<0.1	0.01	200	
slatila Dréminue	Wytrogethene in We		Bromofluorobenzene (Surrogate)				0.01	200 200	0
	I Hydrocarbons in Wa		Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg	0.1 25	<0.1 <25	0.01 1.22 Mett	200 200 nod: ME-(AU)-	0 [ENV]A
Driginal	Duplicate		Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter	mg/kg mg/kg Units	0.1 25 LOR	<0.1 <25 Original	0.01 1.22 Mett Duplicate	200 200 nod: ME-(AU)- Criteria %	RPD
Driginal	· ·		Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10	mg/kg mg/kg Units μg/L	0.1 25 LOR 50	<0.1 <25 Original 0	0.01 1.22 Mett Duplicate 0	200 200 nod: ME-(AU)- Criteria % 200	0 <mark>[ENV]A</mark> RPD 0
	Duplicate	ter	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C9	mg/kg mg/kg Units	0.1 25 LOR	<0.1 <25 Original 0 0	0.01 1.22 Mett Duplicate 0 0	200 200 hod: ME-(AU)- Criteria % 200 200	0 [ENV]A RPD 0 0
original	Duplicate		Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10	mg/kg mg/kg Units μg/L	0.1 25 LOR 50	<0.1 <25 Original 0	0.01 1.22 Mett Duplicate 0	200 200 nod: ME-(AU)- Criteria % 200	0 <mark>[ENV]4</mark> RPC 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178222.001	LB146370.020	Surrogates	d8-toluene (Surrogate)	µg/L	-	4.09	4.13	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	3.79	4.3	30	13
		VPH F Bands	Benzene (F0)	μg/L	0.5	0.03	0.04	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	-0.07	-0.1	200	0
SE178319.028	LB146370.021		TRH C6-C10	μg/L	50	<50	0	200	0
52170518.020			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.8	5.53	30	4
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	6.1	5.57	30	8
			d8-toluene (Surrogate)	µg/L	-	4.3	4.17	30	3
			Bromofluorobenzene (Surrogate)	µg/L	-	3.9	3.94	30	0
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	0.04	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	-0.19	200	0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	/lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB146571.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	102

OC Pesticides in Soil

Sample Number							
	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB146373.002	Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	107
	Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	109
	Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	91
	Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	112
	Endrin	mg/kg	0.2	0.2	0.2	60 - 140	121
	p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	81
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.15	40 - 130	103
P Pesticides in Soil					N	dethod: ME-(A	U)-[ENV]AN
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B146373.002	Dichlorvos	mg/kg	0.5	1.8	2	60 - 140	92
	Diazinon (Dimpylate)	mg/kg	0.5	1.7	2	60 - 140	87
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	85
	Ethion	mg/kg	0.2	1.6	2	60 - 140	81
Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	98
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	98
AH (Polynuclear Aromatic Hydro	carbons) in Soil				N	dethod: ME-(A	U)-[ENV]AN
O a man la Nicora la an							
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
	Parameter Naphthalene	Units mg/kg	LOR 0.1	Result 4.0	Expected 4	Criteria % 60 - 140	Recovery 99
	Naphthalene	mg/kg	0.1	4.0	4	60 - 140	99
	Naphthalene Acenaphthylene	mg/kg mg/kg	0.1 0.1	4.0 3.8	4	60 - 140 60 - 140	99 94
	Naphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	4.0 3.8 3.9	4 4 4	60 - 140 60 - 140 60 - 140	99 94 97
	Naphthalene Acenaphthylene Acenaphthene Phenanthrene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	4.0 3.8 3.9 4.1	4 4 4 4	60 - 140 60 - 140 60 - 140 60 - 140	99 94 97 103
	Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	4.0 3.8 3.9 4.1 4.1	4 4 4 4 4 4	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	99 94 97 103 103
	Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	4.0 3.8 3.9 4.1 4.1 3.8	4 4 4 4 4 4 4	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	99 94 97 103 103 95
	Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.0 3.8 3.9 4.1 4.1 3.8 3.7	4 4 4 4 4 4 4 4	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	99 94 97 103 103 95 92
B146373.002	Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.0 3.8 3.9 4.1 4.1 3.8 3.7 4.3	4 4 4 4 4 4 4 4 4	60 - 140 60 - 140	99 94 97 103 103 95 92 108
B146373.002	Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.0 3.8 3.9 4.1 4.1 3.8 3.7 4.3 0.5	4 4 4 4 4 4 4 4 4 0.5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	99 94 97 103 103 95 92 108 94
B146373.002	Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -	4.0 3.8 3.9 4.1 4.1 3.8 3.7 4.3 0.5 0.5	4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 130	99 94 97 103 103 95 92 108 94 94 98 98
B146373.002 Surrogates	Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -	4.0 3.8 3.9 4.1 4.1 3.8 3.7 4.3 0.5 0.5	4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 130 40 - 130 40 - 130	99 94 97 103 103 95 92 108 94 94 98 98

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

I Otal Necoverable Elements I	IT Soll/Waste Solius/Materials by ICPOES				Moulou.		/ JANU40/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB146547.002	Arsenic, As	mg/kg	3	330	336.32	79 - 120	98
	Cadmium, Cd	mg/kg	0.3	430	416.6	69 - 131	102
	Chromium, Cr	mg/kg	0.3	34	35.2	80 - 120	97
	Copper, Cu	mg/kg	0.5	310	370.46	80 - 120	85
	Nickel, Ni	mg/kg	0.5	180	210.88	79 - 120	86
	Lead, Pb	mg/kg	1	90	107.87	79 - 120	83
	Zinc, Zn	mg/kg	0.5	270	301.27	80 - 121	90
Frace Metals (Dissolved) in W	Vater by ICPMS				N	lethod: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB146391.002	Arsenic, As	µg/L	1	19	20	80 - 120	97
	Cadmium, Cd	µg/L	0.1	21	20	80 - 120	107
	Chromium, Cr	µg/L	1	22	20	80 - 120	109
	Copper, Cu	µg/L	1	23	20	80 - 120	113
	Lead, Pb	µg/L	1	22	20	80 - 120	109
	Nickel, Ni	µg/L	1	21	20	80 - 120	107
	Zinc, Zn	μg/L	5	21	20	80 - 120	104

Method: ME_(ALI)_TENVIAN040/AN320

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	erable Hydrocarbo	·					Nethod: ME-(A	u)-[⊨NVJAI
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB146373.002		TRH C10-C14	mg/kg	20	35	40	60 - 140	88
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	88
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	90
	TRH F Bands	TRH >C10-C16	mg/kg	25	35	40	60 - 140	88
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	90
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	90
RH (Total Recove	erable Hydrocarbo	ns) in Water				I	Method: ME-(A	U)-[ENV]A
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB146443.002		TRH C10-C14	µg/L	50	1200	1200	60 - 140	96
		TRH C15-C28	μg/L	200	1300	1200	60 - 140	104
		TRH C29-C36	µg/L	200	1300	1200	60 - 140	106
	TRH F Bands	TRH >C10-C16	μg/L	60	1200	1200	60 - 140	96
		TRH >C16-C34 (F3)	μg/L	500	1400	1200	60 - 140	113
		TRH >C34-C40 (F4)	μg/L	500	710	600	60 - 140	118
			F-0'-					
OC's in Soil					_		Method: ME-(A	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recove
LB146528.002	Monocyclic	Benzene	mg/kg	0.1	1.8	2.9	60 - 140	62
	Aromatic	Toluene	mg/kg	0.1	2.4	2.9	60 - 140	81
		Ethylbenzene	mg/kg	0.1	2.0	2.9	60 - 140	70
		m/p-xylene	mg/kg	0.2	4.1	5.8	60 - 140	71
		o-xylene	mg/kg	0.1	2.1	2.9	60 - 140	73
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	82
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	5	60 - 140	92
		d8-toluene (Surrogate)	mg/kg	-	6.4	5	60 - 140	129
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.2	5	60 - 140	103
OCs in Water						L. L	Method: ME-(A	U)-[ENV]/
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recove
LB146370.002	Monocyclic	Benzene		0.5	51	45.45	60 - 140	113
			µg/L	0.0	0.	43.45	00 140	
	Aromatic	Toluene	µg/L	0.5	51	45.45	60 - 140	
	Aromatic							113
	Aromatic	Toluene	µg/L	0.5	51	45.45	60 - 140	113 114
	Aromatic	Toluene Ethylbenzene	μg/L μg/L	0.5 0.5	51 52	45.45 45.45	60 - 140 60 - 140	113 114 113
	Aromatic	Toluene Ethylbenzene m/p-xylene	μg/L μg/L μg/L	0.5 0.5 1	51 52 100	45.45 45.45 90.9	60 - 140 60 - 140 60 - 140	113 114 113 114
		Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5	51 52 100 52	45.45 45.45 90.9 45.45	60 - 140 60 - 140 60 - 140 60 - 140	113 114 113 114 99
		Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5	51 52 100 52 5.0	45.45 45.45 90.9 45.45 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	113 114 113 114 99 98
		Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5	51 52 100 52 5.0 4.9	45.45 45.45 90.9 45.45 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	113 114 113 114 99 98 98 93
(olatile Patrolaum	Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - -	51 52 100 52 5.0 4.9 4.6	45.45 45.45 90.9 45.45 5 5 5 5 5	60 - 140 60 - 140	113 114 113 114 99 98 98 93 110
	Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - -	51 52 100 52 5.0 4.9 4.6 5.5	45.45 45.45 90.9 45.45 5 5 5 5 5 5	60 - 140 60 - 140 Vethod: ME-(A	113 114 113 114 99 98 93 110 U)-[ENV]/
Sample Number	Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - -	51 52 100 52 5.0 4.9 4.6 5.5 Result	45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria %	113 114 113 114 99 98 93 110 U)-[ENV]/ Recove
<mark>/olatile Petroleum</mark> Sample Number LB146528.002	Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - - - 25	51 52 100 52 5.0 4.9 4.6 5.5 Result <25	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65	60 - 140 60 - 140 Vethod: ME-(A Criteria % 60 - 140	113 114 112 114 99 98 93 110 U)-[ENV]/ Recove 88
Sample Number	Surrogates Hydrocarbons in S	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - -	51 52 100 52 5.0 4.9 4.6 5.5 Result <25 <20	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140	1113 1114 1113 1114 999 988 933 1110 U)-[ENV]/ Recove 888 855
Sample Number	Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - - - 25	51 52 100 52 5.0 4.9 4.6 5.5 Result <25 <20 4.1	45.45 45.45 90.9 45.45 5 5 5 5 5 Expected 24.65 23.2 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140	1113 114 113 114 99 98 93 110 U)-[ENV]/ Recove 88 85 85 82
Sample Number	Surrogates Hydrocarbons in S	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - - - 25	51 52 100 52 5.0 4.9 4.6 5.5 Result <25 <20 4.1 4.6	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5	60 - 140 60 - 140 Kethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	111: 114 11: 114 99 98 93 111 U)-[ENV] Recove 88 85 82 82 92
Sample Number	Surrogates Hydrocarbons in S	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) bill Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - - - 25 20 - - -	51 52 100 52 5.0 4.9 4.6 5.5 Result <25 <20 4.1 4.6 6.4	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	111: 114 111: 114 99 98 93 111 U)-[ENV] Recove 88 85 82 82 82 92
Sample Number	Surrogates Hydrocarbons in S Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) B*-toluene (Surrogate)	μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - 25 20 - - - - -	51 52 100 52 5.0 4.9 4.6 5.5 Result <25 <20 4.1 4.6 6.4 5.2	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	1113 114 1113 114 99 98 93 1110 U)-[ENV]/ Recove 888 855 82 82 92 92 125 103
Sample Number	Surrogates Hydrocarbons in S	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) bill Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - - - 25 20 - - -	51 52 100 52 5.0 4.9 4.6 5.5 Result <25 <20 4.1 4.6 6.4	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	111: 114: 114: 999 988 933 1110 W)-(ENV) Recove 888 855 822 922 124 101:
Sample Number .B146528.002	Surrogates Hydrocarbons in S Surrogates	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10	μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - 25 20 - - - - -	51 52 100 52 5.0 4.9 4.6 5.5 Result <25 <20 4.1 4.6 6.4 5.2	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 7.25	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	111: 114: 114: 114: 99: 98: 93: 114: U)-[ENV]. Recove 88: 85: 82: 92: 12: 12: 10: 12:
Sample Number LB146528.002	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10	μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - 25 20 - - - - -	51 52 100 52 5.0 4.9 4.6 5.5 Result <25 <20 4.1 4.6 6.4 5.2	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 7.25	60 - 140 60 - 140 Kethod: ME-(Al Criteria % 60 - 140 60 -	1111 114 114 99 98 93 110 U)-[ENV]/ Recove 88 85 82 92 122 103 127 U)-[ENV]/
Sample Number LB146528.002	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Dibromofluoromethane (Surrogate) Orrent Column TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 Vater	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - 25 20 - - - 25 25	51 52 100 52 5.0 4.9 4.6 5.5 Result <25 <20 4.1 4.6 6.4 5.2 <25	45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Kethod: ME-(A)	1111 1114 1114 999 988 933 1110 U)-[ENV]/ Recove 888 855 822 922 125 1003 1257 1003 1257 U)-[ENV]/ Recove
Sample Number LB146528.002	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) bibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) d8-toluene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 Water Parameter TRH C6-C10 minus BTEX (F1) Vater Parameter	μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - 25 20 - - - 25 - 25	51 52 100 52 5.0 4.9 4.6 5.5 Result 225 20 4.1 4.6 6.4 5.2 <25 Result	45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(Al Criteria %	1111 1114 1114 1114 999 988 933 1110 Recover 888 855 822 922 1252 1003 1272 U)-[ENV] Recover 1005 Recover 1005 Recover 1005 Recover 1005 Recover 1005 1
Sample Number LB146528.002	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluoromethane (Surrogate) Bromofluorobenzene (Surrogate) Orrent C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - 25 20 - - - 25 20 - - 25 20 - 50	51 52 100 52 5.0 4.9 4.6 5.5 Result 4.6 5.5 Result 4.6 6.4 5.2 <25 <20 4.1 4.6 6.4 5.2 <25 Result	45.45 45.45 90.9 45.45 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(Al Criteria % 60 - 140	1111 1114 1114 1114 1114 999 988 933 1110 Recover 888 855 822 922 125 1002 125 1002 125 1002 1
Sample Number LB146528.002	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Vater Parameter TRH C6-C10	μg/L	0.5 0.5 1 0.5 - - - - 25 20 - - - 25 20 - - 25 20 - 50 40	51 52 100 52 5.0 4.9 4.6 5.5 5.5 Result 4.6 6.4 5.2 <20 4.1 4.6 6.4 5.2 <25 Result 1000 820 4.7	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 7.25 Expected 946.63 818.71 5	60 - 140 60 - 140 Kethod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A) Criteria % 60 - 140 60	1113 114 113 114 99 98 93 110 U)-[ENV]/ Recove 88 85 82 92 125 103 127 U)-[ENV]/ Recove 103 127 00, [ENV]/ 80 103 103 103 103 103 103 103 103 103 10
Sample Number LB146528.002	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C3 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L μg/kg mg/kg μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - 25 20 - - - 25 20 - - - 25 20 - - 50 40 -	51 52 100 52 5.0 4.9 4.6 5.5 Result <25 <20 4.1 4.6 6.4 5.2 <25 Result 1000 820 4.7 4.6	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 Kethod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A) Criteria % 60 - 140 60	113 114 114 99 98 93 110 U)-[ENV]/ Recove 88 85 82 92 122 103 127 U)-[ENV]/ Recove 105 100 100 95
Sample Number LB146528.002 [/] olatile Petroleum Sample Number	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Vater Parameter TRH C6-C10	μg/L	0.5 0.5 1 0.5 - - - - - - - - - - - - - - - - - 25 - - - -	51 52 100 52 5.0 4.9 4.6 5.5 5.5 Result 4.6 6.4 5.2 <20 4.1 4.6 6.4 5.2 <25 Result 1000 820 4.7	45.45 45.45 90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 7.25 Expected 946.63 818.71 5	60 - 140 60 - 140 Kethod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A) Criteria % 60 - 140 60	113 114 113 114 99 98 93 110 U)-[ENV]/ Recove 88 85 82 82 92 125 103 127

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	iercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/						(Perth)/AN312	
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178229.001	LB146397.004	Mercury	mg/L	0.0001	0.0076	<0.00005	0.008	95
			· · · · · ·					

Mercury in Soil

Mercury in Soil						Met	hod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178290.029	LB146571.004	Mercury	mg/kg	0.05	0.22	<0.05	0.2	96

OC Pesticides in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
E178319.016	LB146373.025		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	121
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	123
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	104
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	0.2	<0.2	0.2	121
			Endrin	mg/kg	0.2	0.2	<0.2	0.2	122
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	91
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	-	101
P Pesticides in	Soil						Met	nod: ME-(AL	J)-[ENV]AN42
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
E178319.016	LB146373.025		Dichlorvos	mg/kg	0.5	1.6	<0.5	2	78
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	1.7	<0.5	2	87
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.6	<0.2	2	82
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
			Ethion	mg/kg	0.2	1.6	<0.2	2	79
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	-

mg/kg

mg/kg

0.5

0.5

0.5

0.6

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Surrogates

· · · ·	· · · · · · · · · · · · · · · · · · ·	·		
QC Sample	Sample Number	Parameter	Units	LOR

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

Method: ME-(AU)-[ENV]AN420

94

96

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

QC Sample	r Aromatic Hydrocarb Sample Number		Parameter	Units	LOR	Result	Original	Spike	J)-[ENV]AN42 Recovery
-	LB146373.025								
SE178319.016	LB146373.025		Naphthalene	mg/kg	0.1	4.0	<0.1	4	100
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	4	96
			Acenaphthylene	mg/kg	0.1	3.9	<0.1		
			Acenaphthene	mg/kg	0.1	4.1	<0.1	4	102
			Fluorene	mg/kg				4	
			Phenanthrene Anthracene	mg/kg	0.1	4.1	<0.1	4	102 102
			Fluoranthene	mg/kg	0.1	3.9	<0.1	4	96
			Pyrene	mg/kg	0.1	3.9	<0.1	4	93
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	- 55
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg mg/kg	0.1	<0.1	<0.1	-	
			Benzo(k)fluoranthene		0.1	<0.1	<0.1	-	
				mg/kg mg/kg	0.1	4.3	<0.1	4	108
			Benzo(a)pyrene Indeno(1,2,3-cd)pyrene		0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg mg/kg	0.1	<0.1	<0.1		
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1		
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.1</td><td>4.3</td><td><0.1</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.1	4.3	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.5</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	4.5	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.5</td><td><0.3</td><td>-</td><td>-</td></lor=lor></lor=lor 	TEQ (mg/kg)	0.3	4.5	<0.3	-	-
			Total PAH (18)	mg/kg	0.2	32	<0.2		
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5		94
		Gungales	2-fluorobiphenyl (Surrogate)	mg/kg	_	0.5	0.5	-	94
			d14-p-terphenyl (Surrogate)	mg/kg		0.5	0.6	-	96
CBs in Soil								and: ME (A)	J)-[ENV]AN4
	<u> </u>			11.14					
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE178319.016	LB146373.028		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.5	<0.2	0.4	124
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	-	105
	le Elements in Soil/Wa	iste Solids/Mate	rials by ICPOES				Method: ME		
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE178290.028	LB146547.004		Arsenic, As	mg/kg	3	50	5	50	89
			Cadmium, Cd	mg/kg	0.3	46	<0.3	50	91
			Chromium, Cr	mg/kg	0.3	52	7.2	50	89
			Copper, Cu	mg/kg	0.5	82	35	50	95
			Nickel, Ni	mg/kg	0.5	62	20	50	84
			Lead, Pb	mg/kg	1	58	15	50	86
			Zinc, Zn	mg/kg	0.5	130	78	50	96
race Metals (Di	ssolved) in Water by I	CPMS					Met	nod: ME-(Al	J)-[ENV]AN3
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE177967A.01	LB146391.004		Copper, Cu	μg/L	1	64	42	20	114
0			Lead, Pb	μg/L	1	22	2	20	101
J			Zinc, Zn	µg/L	5	71	50	20	107
	verable Hydrocarbons	i) in Soil					Met	nod: ME-(Al	J)-[ENV]AN₄
RH (Total Reco	-	s) in Soil	Parameter	Units	LOR	Re <u>sult</u>			
<mark>RH (Total Reco</mark> QC Sample	Sample Number	s) in Soil	Parameter TRH C10-C14	Units ma/ka		Result 33	Original	Spike	Recover
	-	s) in Soil	TRH C10-C14	mg/kg	20	33	Original <20	Spike 40	J)-[ENV]AN4 Recover 83 78
<mark>'RH (Total Reco</mark> QC Sample	Sample Number	s) in Soil					Original	Spike	Recover

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

OC Samala	Sample Number			Units	LOR	Popult		nod: ME-(AU	<u> </u>
QC Sample	Sample Number		Parameter			Result	Original	Spike	Recover
SE178319.016	LB146373.028		TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
		TOULS Davids	TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F Bands	TRH >C10-C16	mg/kg	25	32	<25	40	80
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	32	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90 <120	<90 <120	40	83
			TRH >C34-C40 (F4)	mg/kg	120	<120			-
OC's in Soil								nod: ME-(AU	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E178319.001	LB146528.004	Monocyclic	Benzene	mg/kg	0.1	2.0	<0.1	2.9	69
		Aromatic	Toluene	mg/kg	0.1	2.4	<0.1	2.9	83
			Ethylbenzene	mg/kg	0.1	1.9	<0.1	2.9	67
			m/p-xylene	mg/kg	0.2	4.8	<0.2	5.8	83
			o-xylene	mg/kg	0.1	2.1	<0.1	2.9	71
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	6.1	4.6	-	122
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.0	4.0	-	120
			d8-toluene (Surrogate)	mg/kg	-	6.2	3.9	-	124
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.0	4.8	-	120
		Totals	Total Xylenes	mg/kg	0.3	6.9	<0.3	-	-
			Total BTEX	mg/kg	0.6	13	<0.6	-	-
OCs in Water							Meth	nod: ME-(AU)-[ENV]A
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
E178222.002	LB146370.022	Monocyclic	Benzene	μg/L	0.5	46	0.03	45.45	102
		Aromatic	Toluene	μg/L	0.5	50	0.01	45.45	110
			Ethylbenzene	µg/L	0.5	54	0.01	45.45	119
			m/p-xylene	μg/L	1	110	0.01	90.9	126
			o-xylene	μg/L	0.5	58	0	45.45	127
		Polycyclic	Naphthalene	µg/L	0.5	53	0.02	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.1	4.13	-	102
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.3	5.63	-	107
			d8-toluene (Surrogate)	µg/L	-	3.9	4.67	-	78
			Bromofluorobenzene (Surrogate)	μg/L	-	5.6	4.13	-	112
olatile Petroleu	m Hydrocarbons in S	oil					Meth	nod: ME-(AU)-[ENV]A
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
SE178319.001	LB146528.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	73
02110010.001	20110020.001		TRH C6-C9	mg/kg	20	<20	<20	23.2	73
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg		6.1	4.6		122
		Ganogatoo	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.0	4.0	_	120
			d8-toluene (Surrogate)	mg/kg	-	6.2	3.9		124
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.0	4.8		120
		VPH F	Benzene (F0)	mg/kg	0.1	2.0	<0.1	-	
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	68
olatile Petroleu	m Hydrocarbons in W			0.0				nod: ME-(AU	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
SE178222.002	LB146370.022		TRH C6-C10	µg/L	50	990	0 0	946.63	104
SE 11 0222.002	LD 17007 0.022		TRH C6-C9	µg/L	40	840	0	818.71	104
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.1	4.13	-	103
		Sunoyates	d4-1,2-dichloroethane (Surrogate)	µg/L		5.3	5.63	-	102
				P9/L	-	0.0	0.00		107
				ug/l	-	30	4.67	-	79
			d8-toluene (Surrogate)	μg/L	-	3.9	4.67	-	78
		VPH F		μg/L μg/L μg/L	0.5	3.9 5.6 46	4.67 4.13 0.03	-	78

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Sharon Li	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sharon.li@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23796 - 26 Elizabeth St, Liverpool NSW	SGS Reference	SE178657 R0
Order Number	E23796	Date Received	03 May 2018
Samples	7	Date Reported	09 May 2018

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Trace Metals (Dissolved) in Water by ICPMS

2 items

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in correct containers	Yes	Sample counts by matrix	7 Water	
Date documentation received	3/5/2018	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	12.0°C	Sufficient sample for analysis	Yes	
Furnaround time requested	Standard			

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Wa	ter						Method: ME-(AU)-[ENV]AN311(Perth)/AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE178657.001	LB147394	02 May 2018	03 May 2018	30 May 2018	09 May 2018	30 May 2018	09 May 2018
BH2M	SE178657.002	LB147394	02 May 2018	03 May 2018	30 May 2018	09 May 2018	30 May 2018	09 May 2018
BH8M	SE178657.003	LB147394	02 May 2018	03 May 2018	30 May 2018	09 May 2018	30 May 2018	09 May 2018
GWQD1	SE178657.004	LB147394	02 May 2018	03 May 2018	30 May 2018	09 May 2018	30 May 2018	09 May 2018
GWQR1	SE178657.005	LB147394	02 May 2018	03 May 2018	30 May 2018	09 May 2018	30 May 2018	09 May 2018
letals in Water (Dissolve	d) by ICPOES						Method:	ME-(AU)-[ENV]AN32
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE178657.001	LB147364	02 May 2018	03 May 2018	29 Oct 2018	08 May 2018	29 Oct 2018	09 May 2018
BH2M	SE178657.002	LB147364	02 May 2018	03 May 2018	29 Oct 2018	08 May 2018	29 Oct 2018	09 May 2018
BH8M	SE178657.003	LB147364	02 May 2018	03 May 2018	29 Oct 2018	08 May 2018	29 Oct 2018	09 May 2018
PAH (Polynuclear Aromati	ic Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE178657.001	LB147222	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
BH2M	SE178657.002	LB147222	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
BH8M	SE178657.003	LB147222	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
GWQD1	SE178657.004	LB147222	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
GWQR1	SE178657.005	LB147222	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
Total Phenolics in Water							Method:	ME-(AU)-[ENV]AN28
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE178657.001	LB147167	02 May 2018	03 May 2018	30 May 2018	07 May 2018	30 May 2018	07 May 2018
BH2M	SE178657.002	LB147167	02 May 2018	03 May 2018	30 May 2018	07 May 2018	30 May 2018	07 May 2018
BH8M	SE178657.003	LB147167	02 May 2018	03 May 2018	30 May 2018	07 May 2018	30 May 2018	07 May 2018
Frace Metals (Dissolved) i	n Water by ICPMS						Method:	ME-(AU)-[ENV]AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE178657.001	LB147330	02 May 2018	03 May 2018	29 Oct 2018	08 May 2018	29 Oct 2018	08 May 2018
BH2M	SE178657.002	LB147330	02 May 2018	03 May 2018	29 Oct 2018	08 May 2018	29 Oct 2018	08 May 2018
BH8M	SE178657.003	LB147330	02 May 2018	03 May 2018	29 Oct 2018	08 May 2018	29 Oct 2018	08 May 2018
GWQD1	SE178657.004	LB147330	02 May 2018	03 May 2018	29 Oct 2018	08 May 2018	29 Oct 2018	08 May 2018
GWQR1	SE178657.005	LB147330	02 May 2018	03 May 2018	29 Oct 2018	08 May 2018	29 Oct 2018	08 May 2018
RH (Total Recoverable H	lydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN40
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE178657.001	LB147222	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
BH2M	SE178657.002	LB147222	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
BH8M	SE178657.003	LB147222	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
GWQD1	SE178657.004	LB147222	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
GWQR1	SE178657.005	LB147222	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
/OCs in Water							Method:	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE178657.001	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
BH2M	SE178657.002	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
BH8M	SE178657.003	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
GWQD1	SE178657.004	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
GWQR1	SE178657.005	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
GWTS1	SE178657.006	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
GWTB1	SE178657.007	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
/olatile Petroleum Hydroc	arbons in Water						Method:	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M	SE178657.001	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
BH2M	SE178657.002	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
BH8M	SE178657.003	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
GWQD1	SE178657.004	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
GWQR1	SE178657.005	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
	SE178657.006	LB147166	02 May 2018	03 May 2018	09 May 2018	07 May 2018	16 Jun 2018	08 May 2018
GWTS1	3E1/603/.000	LD 147 100	02 Way 2010	00 May 2010	03 Way 2010	07 Way 2010	10 3011 2010	00 May 2010

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1M	SE178657.001	%	40 - 130%	62
	BH2M	SE178657.002	%	40 - 130%	66
	BH8M	SE178657.003	%	40 - 130%	62
d14-p-terphenyl (Surrogate)	BH1M	SE178657.001	%	40 - 130%	74
	BH2M	SE178657.002	%	40 - 130%	70
	BH8M	SE178657.003	%	40 - 130%	74
d5-nitrobenzene (Surrogate)	BH1M	SE178657.001	%	40 - 130%	56
	BH2M	SE178657.002	%	40 - 130%	58
	BH8M	SE178657.003	%	40 - 130%	56

Bit M SE 178657.001 % 40 - 130% 102 BH2M SE 178657.002 % 40 - 130% 111 BH3M SE 178657.002 % 40 - 130% 102 GWQD1 SE 178657.003 % 40 - 130% 102 GWQD1 SE 178657.004 % 40 - 130% 83 GWQD1 SE 178657.005 % 40 - 130% 83 GWQD1 SE 178657.005 % 40 - 130% 83 GWQR1 SE 178657.005 % 40 - 130% 84 44-1.2-dichloroethane (Surrogate) BH1M SE 178657.001 % 40 - 130% 118 GWTB1 SE 178657.002 % 40 - 130% 112 GWQD1 SE 178657.002 % 40 - 130% 112 GWQD1 SE 178657.003 % 40 - 130% 112 GWQD1 SE 178657.005 % 40 - 130% 114 BH8M SE 178657.001 % 40 - 130% 100 GWCR1 <	VOCs in Water				Method: ME-(AU)-[ENV]AN433		
BH2M SE178657.002 % 40 - 130% 111 BH8M SE178657.003 % 40 - 130% 102 GWQ01 SE178657.004 % 40 - 130% 81 GWQ1 SE178657.005 % 40 - 130% 81 GWQ1 SE178657.005 % 40 - 130% 81 GWT51 SE178657.005 % 40 - 130% 116 GWQ1 SE178657.001 % 40 - 130% 118 BH4 SE178657.002 % 40 - 130% 118 GWQ1 SE178657.003 % 40 - 130% 118 BH8M SE178657.003 % 40 - 130% 118 GWQ1 SE178657.003 % 40 - 130% 112 GWQ1 SE178657.001 % 40 - 130% 101 GWQ1 SE178657.001 % 40 - 130% 101 BH40 SE178657.001 % 40 - 130% 101 GWQ1 SE178657.001 % 40 - 130%	Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %	
BH8M SE178657.003 % 40 - 130% 102 GW0O1 SE178657.004 % 40 - 130% 83 GW0R1 SE178657.005 % 40 - 130% 83 GW0R1 SE178657.006 % 40 - 130% 160 GWTS1 SE178657.007 % 40 - 130% 161 H1 SE178657.001 % 40 - 130% 181 BH2 GW0R1 SE178657.002 % 40 - 130% 112 BH2 GW0R1 SE178657.003 % 40 - 130% 112 GW0R1 SE178657.003 % 40 - 130% 123 GW0R1 SE178657.003 % 40 - 130% 112 GW0R1 SE178657.001 % 40 - 130% 113 GW0R1 SE178657.002 % 40 - 130% 90 GW181 SE178657.001 % 40 - 130% 90 BH2M SE178657.002 % 40 - 130% 90 GW0R1 SE178657.001	Bromofluorobenzene (Surrogate)	BH1M	SE178657.001	%	40 - 130%	102	
BWQD1 SE178657.004 % 40.130% 83 GWQR1 SE178657.005 % 40.130% 83 GWTS1 SE178657.005 % 40.130% 81 44.12-dichloroethane (Surrogate) H1M SE178657.001 % 40.130% 108 H4.12-dichloroethane (Surrogate) BH1M SE178657.002 % 40.130% 112 GWQD1 SE178657.002 % 40.130% 112 BH2M SE178657.003 % 40.130% 112 GWQD1 SE178657.005 % 40.130% 112 GWQR1 SE178657.005 % 40.130% 123 GWQR1 SE178657.005 % 40.130% 123 GWQR1 SE178657.001 % 40.130% 141 BH1M SE178657.001 % 40.130% 100 GWR1 SE178657.001 % 40.130% 101 GWQD1 SE178657.001 % 40.130% 101 GWQD1		BH2M	SE178657.002	%	40 - 130%	111	
GWQR1 SE178657.005 % 4.0.130% 80 GWTS1 SE178657.006 % 40.130% 116 GWTB1 SE178657.007 % 40.130% 84 44-1.2.dichloroethane (Surrogate) BH1M SE178657.001 % 40.130% 118 BH2M SE178657.002 % 40.130% 118 GWQR1 SE178657.003 % 40.130% 112 GWQR1 SE178657.003 % 40.130% 123 GWQR1 SE178657.005 % 40.130% 123 GWQR1 SE178657.005 % 40.130% 123 GWQR1 SE178657.005 % 40.130% 123 GWTB1 SE178657.005 % 40.130% 100 BH2M SE178657.003 % 40.130% 100 GWQR1 SE178657.003 % 40.130% 100 GWQR1 SE178657.003 % 40.130% 100 GWTB1 SE178657.003 % <td></td> <td>BH8M</td> <td>SE178657.003</td> <td>%</td> <td>40 - 130%</td> <td>102</td>		BH8M	SE178657.003	%	40 - 130%	102	
GWTS1 SE178657.006 % 40.130% 116 GWTE1 SE178657.007 % 40.130% 84 H1 SE178657.001 % 40.130% 109 H4.2.4.dthloroethane (Surrogate) BH1M SE178657.001 % 40.130% 112 BH2M SE178657.003 % 40.130% 112 GWQD1 SE178657.003 % 40.130% 123 GWQD1 SE178657.004 % 40.130% 123 GWQD1 SE178657.005 % 40.130% 123 GWQD1 SE178657.006 % 40.130% 106 GWTS1 SE178657.007 % 40.130% 106 GWTS1 SE178657.001 % 40.130% 107 BH2M SE178657.003 % 40.130% 100 GWQD1 SE178657.003 % 40.130% 107 GWQR1 SE178657.004 % 40.130% 107 GWQR1 SE178657.003 %		GWQD1	SE178657.004	%	40 - 130%	83	
GWTB1 SE178657.007 % 40-130% 84 44-12-dichloroethane (Surrogate) BH1M SE178657.001 % 40-130% 109 BH2M SE178657.002 % 40-130% 112 GWQD1 SE178657.003 % 40-130% 123 GWQD1 SE178657.004 % 40-130% 123 GWQD1 SE178657.005 % 40-130% 123 GWQD1 SE178657.005 % 40-130% 123 GWQD1 SE178657.005 % 40-130% 123 GWQD1 SE178657.007 % 40-130% 106 BH1M SE178657.001 % 40-130% 90 BH2M SE178657.001 % 40-130% 90 GWQD1 SE178657.004 % 40-130% 90 BH3M SE178657.004 % 40-130% 90 GWQD1 SE178657.004 % 40-130% 90 BH3M SE178657.004 %		GWQR1	SE178657.005	%	40 - 130%	80	
BH1M SE178657.001 % 4.0.130% 109 BH2M SE178657.002 % 4.0.130% 118 BH4M SE178657.002 % 4.0.130% 112 GWQD1 SE178657.003 % 4.0.130% 112 GWQD1 SE178657.004 % 4.0.130% 106 GWR1 SE178657.005 % 4.0.130% 108 GWR1 SE178657.007 % 4.0.130% 108 GWR1 SE178657.007 % 4.0.130% 98 GWTB1 SE178657.007 % 4.0.130% 90 BH2M SE178657.002 % 4.0.130% 90 BH2M SE178657.002 % 4.0.130% 90 GWD1 SE178657.003 % 4.0.130% 90 GWQD1 SE178657.005 % 4.0.130% 90 GWR1 SE178657.001 % 4.0.130% 90 OD GWR1 SE178657.002 % 4.0.130%		GWTS1	SE178657.006	%	40 - 130%	116	
BH2M SE178657.002 % 40.130% 118 BH8M SE178657.003 % 40.130% 112 GW0D1 SE178657.003 % 40.130% 123 GW0R1 SE178657.005 % 40.130% 123 GW0R1 SE178657.005 % 40.130% 183 GWTS1 SE178657.007 % 40.130% 98 GWTB1 SE178657.001 % 40.130% 90 BH4M SE178657.002 % 40.130% 90 GW0D1 SE178657.002 % 40.130% 90 GW0D1 SE178657.003 % 40.130% 90 GW0R1 SE178657.005 % 40.130% 90 GW0R1 SE178657.005 % 40.130% 90 Dibromofluoromethane (Surrogate) BH1M SE178657.001 % 40.130% 90 Dibromofluoromethane (Surrogate) BH1M SE178657.002 % 40.130% 101 GW0R1		GWTB1	SE178657.007	%	40 - 130%	84	
BH8M SE178657.003 % 40 - 130% 112 GWQD1 SE178657.004 % 40 - 130% 123 GWQR1 SE178657.005 % 40 - 130% 106 GWTS1 SE178657.006 % 40 - 130% 98 GWTS1 SE178657.007 % 40 - 130% 98 BH1M SE178657.001 % 40 - 130% 90 BH2M SE178657.002 % 40 - 130% 90 BH2M SE178657.003 % 40 - 130% 90 BH3M SE178657.003 % 40 - 130% 90 GWQD1 SE178657.004 % 40 - 130% 90 GWQ1 SE178657.005 % 40 - 130% 90 GWQ1 SE178657.004 % 40 - 130% 90 GWQ1 SE178657.001 % 40 - 130% 90 GWTS1 SE178657.001 % 40 - 130% 101 Dibromofluoromethane (Surrogate) BH1M SE178657.001	d4-1,2-dichloroethane (Surrogate)	BH1M	SE178657.001	%	40 - 130%	109	
GWQD1 SE178657.004 % 40.130% 123 GWQR1 SE178657.005 % 40.130% 106 GWTS1 SE178657.006 % 40.130% 98 GWTB1 SE178657.007 % 40.130% 91 BH1M SE178657.007 % 40.130% 90 BH2M SE178657.001 % 40.130% 90 BH2M SE178657.002 % 40.130% 90 GWQD1 SE178657.002 % 40.130% 90 BH3M SE178657.003 % 40.130% 90 GWQD1 SE178657.004 % 40.130% 90 GWQD1 SE178657.005 % 40.130% 90 GWTS1 SE178657.007 % 40.130% 90 Dibromofluoromethane (Surrogate) BH1M SE178657.001 % 40.130% 105 BH2M SE178657.002 % 40.130% 105 GWTS1 SE178657.003 % <td< td=""><td></td><td>BH2M</td><td>SE178657.002</td><td>%</td><td>40 - 130%</td><td>118</td></td<>		BH2M	SE178657.002	%	40 - 130%	118	
GWQR1 SE178657.005 % 4.0.130% 106 GWTS1 SE178657.006 % 4.0.130% 98 GWTB1 SE178657.007 % 4.0.130% 114 88-toluene (Surrogate) BH1M SE178657.001 % 4.0.130% 90 BH2M SE178657.002 % 4.0.130% 90 BH2M SE178657.003 % 4.0.130% 90 BH2M SE178657.003 % 4.0.130% 90 GWQD1 SE178657.003 % 4.0.130% 90 GWQ1 SE178657.005 % 4.0.130% 90 GWTS1 SE178657.007 % 4.0.130% 90 GWTS1 SE178657.001 % 4.0.130% 90 Dibromofluoromethane (Surrogate) BH1M SE178657.001 % 4.0.130% 101 BH2M SE178657.003 % 4.0.130% 105 105 BH1M SE178657.003 % 4.0.130% 105 105		BH8M	SE178657.003	%	40 - 130%	112	
GWTS1 SE178657.006 % 40 - 130% 98 GWTB1 SE178657.007 % 40 - 130% 114 18-oluene (Surrogate) BH1M SE178657.001 % 40 - 130% 90 BH2M SE178657.002 % 40 - 130% 90 BH2M SE178657.003 % 40 - 130% 98 GWQD1 SE178657.003 % 40 - 130% 98 GWQR1 SE178657.004 % 40 - 130% 98 GWTS1 SE178657.005 % 40 - 130% 98 GWTS1 SE178657.005 % 40 - 130% 98 GWTS1 SE178657.005 % 40 - 130% 98 GWTS1 SE178657.001 % 40 - 130% 96 GWTS1 SE178657.001 % 40 - 130% 91 Dibromofluoromethane (Surrogate) BH1M SE178657.001 % 40 - 130% 101 BH2M SE178657.002 % 40 - 130% 105 GWQD		GWQD1	SE178657.004	%	40 - 130%	123	
GWTB1 SE178657.007 % 40.130% 114 18-toluene (Surrogate) BH1M SE178657.001 % 40.130% 90 BH2M SE178657.002 % 40.130% 90 BH2M SE178657.003 % 40.130% 90 GW0D1 SE178657.003 % 40.130% 98 GW0D1 SE178657.004 % 40.130% 98 GW0R1 SE178657.005 % 40.130% 98 GW0R1 SE178657.005 % 40.130% 98 GW0R1 SE178657.001 % 40.130% 98 GWTB1 SE178657.001 % 40.130% 98 GWTB1 SE178657.001 % 40.130% 91 Divomofluoromethane (Surrogate) BH1M SE178657.002 % 40.130% 105 GWQD1 SE178657.003 % 40.130% 105 GWQD1 SE178657.005 % 40.130% 126 GWQR1 SE17865		GWQR1	SE178657.005	%	40 - 130%	106	
BH1M SE178657.001 % 40.130% 90 BH2M SE178657.002 % 40.130% 100 BH8M SE178657.003 % 40.130% 98 GWQD1 SE178657.004 % 40.130% 98 GWQR1 SE178657.004 % 40.130% 98 GWQR1 SE178657.005 % 40.130% 83 GWTS1 SE178657.005 % 40.130% 96 GWTB1 SE178657.001 % 40.130% 90 Dibromofluoromethane (Surrogate) BH1M SE178657.001 % 40.130% 90 BH2M SE178657.002 % 40.130% 101 GWQD1 SE178657.003 % 40.130% 105 GWQD1 SE178657.003 % 40.130% 105 GWQD1 SE178657.004 % 40.130% 105 GWQD1 SE178657.005 % 40.130% 106 GWQD1 SE178657.005 %		GWTS1	SE178657.006	%	40 - 130%	98	
BH2M SE178657.002 % 40 - 130% 100 BH8M SE178657.003 % 40 - 130% 98 GW0D1 SE178657.004 % 40 - 130% 107 GW0R1 SE178657.005 % 40 - 130% 83 GWTS1 SE178657.005 % 40 - 130% 96 GWTB1 SE178657.006 % 40 - 130% 96 GWTB1 SE178657.007 % 40 - 130% 90 BH1M SE178657.007 % 40 - 130% 90 BH2M SE178657.002 % 40 - 130% 105 GW0D1 SE178657.002 % 40 - 130% 105 BH2M SE178657.003 % 40 - 130% 105 GW0D1 SE178657.003 % 40 - 130% 126 GW0R1 SE178657.004 % 40 - 130% 126 GW0R1 SE178657.005 % 40 - 130% 104 GW0R1 SE178657.005 % 40 - 130%		GWTB1	SE178657.007	%	40 - 130%	114	
BH8M SE178657.003 % 40.130% 98 GWQD1 SE178657.004 % 40.130% 107 GWQR1 SE178657.005 % 40.130% 83 GWTS1 SE178657.006 % 40.130% 96 GWTB1 SE178657.007 % 40.130% 90 Dibromofluoromethane (Surrogate) BH1M SE178657.001 % 40.130% 115 BH2M SE178657.002 % 40.130% 109 BH2M SE178657.002 % 40.130% 109 BH2M SE178657.003 % 40.130% 109 GWQD1 SE178657.003 % 40.130% 105 GWQD1 SE178657.004 % 40.130% 126 GWQR1 SE178657.005 % 40.130% 104 GWQR1 SE178657.006 % 40.130% 104	d8-toluene (Surrogate)	BH1M	SE178657.001	%	40 - 130%	90	
GWQD1 SE178657.004 % 40 - 130% 107 GWQR1 SE178657.005 % 40 - 130% 83 GWTS1 SE178657.006 % 40 - 130% 96 GWTS1 SE178657.007 % 40 - 130% 90 Dibromofluoromethane (Surrogate) BH1M SE178657.001 % 40 - 130% 115 BH2M SE178657.002 % 40 - 130% 109 BH8M SE178657.003 % 40 - 130% 109 GWQD1 SE178657.004 % 40 - 130% 105 GWQR1 SE178657.005 % 40 - 130% 104 GWTS1 SE178657.006 % 40 - 130% 104		BH2M	SE178657.002	%	40 - 130%	100	
GWQR1 SE178657.005 % 40 - 130% 83 GWTS1 SE178657.006 % 40 - 130% 96 GWTB1 SE178657.007 % 40 - 130% 90 Dibromofluoromethane (Surrogate) BH1M SE178657.001 % 40 - 130% 115 BH2M SE178657.002 % 40 - 130% 109 BH8M SE178657.003 % 40 - 130% 105 GWQD1 SE178657.004 % 40 - 130% 105 GWQR1 SE178657.005 % 40 - 130% 104 GWTS1 SE178657.006 % 40 - 130% 104		BH8M	SE178657.003	%	40 - 130%	98	
GWTS1 SE178657.006 % 40 - 130% 96 GWTB1 SE178657.007 % 40 - 130% 90 Dibromofluoromethane (Surrogate) BH1M SE178657.001 % 40 - 130% 115 BH2M SE178657.002 % 40 - 130% 109 BH8M SE178657.003 % 40 - 130% 105 GWQD1 SE178657.004 % 40 - 130% 126 GWQR1 SE178657.005 % 40 - 130% 104 GWTS1 SE178657.006 % 40 - 130% 104		GWQD1	SE178657.004	%	40 - 130%	107	
GWTB1 SE178657.007 % 40 - 130% 90 Dibromofluoromethane (Surrogate) BH1M SE178657.001 % 40 - 130% 115 BH2M SE178657.002 % 40 - 130% 109 BH8M SE178657.003 % 40 - 130% 105 GWQD1 SE178657.004 % 40 - 130% 126 GWQR1 SE178657.005 % 40 - 130% 104 GWTS1 SE178657.006 % 40 - 130% 101		GWQR1	SE178657.005	%	40 - 130%	83	
Dibromofluoromethane (Surrogate) BH1M SE178657.001 % 40 - 130% 115 BH2M SE178657.002 % 40 - 130% 109 BH8M SE178657.003 % 40 - 130% 105 GWQD1 SE178657.004 % 40 - 130% 126 GWQR1 SE178657.005 % 40 - 130% 104 GWTS1 SE178657.006 % 40 - 130% 101		GWTS1	SE178657.006	%	40 - 130%	96	
BH2M SE178657.002 % 40 - 130% 109 BH8M SE178657.003 % 40 - 130% 105 GWQD1 SE178657.004 % 40 - 130% 126 GWQR1 SE178657.005 % 40 - 130% 104 GWTS1 SE178657.006 % 40 - 130% 101		GWTB1	SE178657.007	%	40 - 130%	90	
BH8MSE178657.003%40 - 130%105GWQD1SE178657.004%40 - 130%126GWQR1SE178657.005%40 - 130%104GWTS1SE178657.006%40 - 130%101	Dibromofluoromethane (Surrogate)	BH1M	SE178657.001	%	40 - 130%	115	
GWQD1SE178657.004%40 - 130%126GWQR1SE178657.005%40 - 130%104GWTS1SE178657.006%40 - 130%101		BH2M	SE178657.002	%	40 - 130%	109	
GWQR1 SE178657.005 % 40 - 130% 104 GWTS1 SE178657.006 % 40 - 130% 101		BH8M	SE178657.003	%	40 - 130%	105	
GWTS1 SE178657.006 % 40 - 130% 101		GWQD1	SE178657.004	%	40 - 130%	126	
		GWQR1	SE178657.005	%	40 - 130%	104	
		GWTS1	SE178657.006	%	40 - 130%	101	
		GWTB1	SE178657.007	%	40 - 130%		

Volatile Petroleum Hydrocarbons in Water

Volatile Petroleum Hydrocarbons in Water				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M	SE178657.001	%	40 - 130%	76
	BH2M	SE178657.002	%	40 - 130%	85
	BH8M	SE178657.003	%	40 - 130%	87
	GWQD1	SE178657.004	%	40 - 130%	83
	GWQR1	SE178657.005	%	40 - 130%	80
d4-1,2-dichloroethane (Surrogate)	BH1M	SE178657.001	%	60 - 130%	118
	BH2M	SE178657.002	%	60 - 130%	128
	BH8M	SE178657.003	%	60 - 130%	122
	GWQD1	SE178657.004	%	60 - 130%	123
	GWQR1	SE178657.005	%	60 - 130%	106
d8-toluene (Surrogate)	BH1M	SE178657.001	%	40 - 130%	102
	BH2M	SE178657.002	%	40 - 130%	100
	BH8M	SE178657.003	%	40 - 130%	91
	GWQD1	SE178657.004	%	40 - 130%	107
	GWQR1	SE178657.005	%	40 - 130%	83
Dibromofluoromethane (Surrogate)	BH1M	SE178657.001	%	40 - 130%	127
	BH2M	SE178657.002	%	40 - 130%	120
	BH8M	SE178657.003	%	40 - 130%	115
	GWQD1	SE178657.004	%	40 - 130%	126

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Volatile Petroleum Hydrocarbons in Water (continued)							
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %		
Dibromofluoromethane (Surrogate)	GWQR1	SE178657.005	%	40 - 130%	104		

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water		Method: ME-(AU)-[E	NVJAN311(Perth)/AN312	
Sample Number	Parameter	Units	LOR	Result
LB147394.001	Mercury	mg/L	0.0001	<0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

PAH (Polynuclear Aromatic Hydrocar	ons) in Water		Meth	od: ME-(AU)-[ENV]AN4
Sample Number	Parameter	Units	LOR	Result
LB147222.001	Naphthalene	µg/L	0.1	<0.1
	2-methylnaphthalene	µg/L	0.1	<0.1
	1-methylnaphthalene	µg/L	0.1	<0.1
	Acenaphthylene	µg/L	0.1	<0.1
	Acenaphthene	µg/L	0.1	<0.1
	Fluorene	µg/L	0.1	<0.1
	Phenanthrene	µg/L	0.1	<0.1
	Anthracene	µg/L	0.1	<0.1
	Fluoranthene	µg/L	0.1	<0.1
	Pyrene	µg/L	0.1	<0.1
	Benzo(a)anthracene	µg/L	0.1	<0.1
	Chrysene	µg/L	0.1	<0.1
	Benzo(a)pyrene	µg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1
	Dibenzo(ah)anthracene	µg/L	0.1	<0.1
	Benzo(ghi)perylene	µg/L	0.1	<0.1
Surrogate	d5-nitrobenzene (Surrogate)	%	-	64
	2-fluorobiphenyl (Surrogate)	%	-	60
	d14-p-terphenyl (Surrogate)	%	-	66
Total Phenolics in Water			Meth	od: ME-(AU)-[ENV]AN
Sample Number	Parameter	Units	LOR	Result
LB147167.001	Total Phenols	mg/L	0.01	<0.01

Frace Metals (Dissolv	ed) in Water by ICPMS			Meth	od: ME-(AU)-[ENV]AN3	
Sample Number		Parameter	Units	LOR	Result	
LB147330.001		Aluminium, Al	µg/L	5	<5	
		Arsenic, As	µg/L	1	<1	
		Cadmium, Cd	µg/L	0.1	<0.1	
		Chromium, Cr	µg/L	1	<1	
		Copper, Cu	µg/L	1	<1	
		Lead, Pb	µg/L	1	<1	
		Nickel, Ni	μg/L	1	<1	
		Zinc, Zn	μg/L	5	<5	
IRH (Total Recoverat	ble Hydrocarbons) in Water			1 <1 1 <1 1 <1		
Sample Number		Parameter	Units	LOR	Result	
LB147222.001		TRH C10-C14	μg/L	50	<50	
		TRH C15-C28	μg/L	200	<200	
		TRH C29-C36	μg/L	200	<200	
		TRH C37-C40	μg/L	200	<200	
/OCs in Water				Meth	od: ME-(AU)-[ENV]AN4	
Sample Number		Parameter	Units	LOR	Result	
LB147166.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5	
		1,2-dichloropropane	μg/L	0.5	<0.5	
		cis-1,3-dichloropropene	μg/L	0.5	<0.5	
		trans-1,3-dichloropropene	μg/L	0.5	<0.5	
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	
	·	Chloromethane	μg/L	5	<5	
		Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	
		Bromomethane	μg/L	10	<10	
		Chloroethane	μg/L	5	<5	
		Trichlorofluoromethane	μg/L	1	<1	

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

1. 11	ued)				od: ME-(AU)-[ENV]A
mple Number		Parameter	Units	LOR	Result
147166.001	Halogenated Aliphatics	Iodomethane	μg/L	5	<5
		1,1-dichloroethene	μg/L	0.5	<0.5
		Dichloromethane (Methylene chloride)	μg/L	5	<5
		Allyl chloride	µg/L	2	<2
		trans-1,2-dichloroethene	μg/L	0.5	<0.5
		1,1-dichloroethane	μg/L	0.5	<0.5
		cis-1,2-dichloroethene		0.5	<0.5
			μg/L		
		Bromochloromethane	μg/L	0.5	<0.5
		1,2-dichloroethane	μg/L	0.5	<0.5
		1,1,1-trichloroethane	μg/L	0.5	<0.5
		1,1-dichloropropene	μg/L	0.5	<0.5
		Carbon tetrachloride	μg/L	0.5	<0.5
		Dibromomethane	μg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane	μg/L	0.5	<0.5
		1,3-dichloropropane	μg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5
		1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5
		cis-1,4-dichloro-2-butene	μg/L	1	<1
		1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5
		1,2,3-trichloropropane	μg/L	0.5	<0.5
		trans-1,4-dichloro-2-butene	μg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene	μg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	μg/L	0.5	<0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	μg/L	0.5	<0.5
		4-chlorotoluene	μg/L	0.5	<0.5
		1,3-dichlorobenzene	μg/L	0.5	<0.5
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1,2-dichlorobenzene	μg/L	0.5	<0.5
		1,2,4-trichlorobenzene	μg/L	0.5	<0.5
		1,2,3-trichlorobenzene	μg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	µg/L	0.5	<0.5
		Ethylbenzene	µg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
		Styrene (Vinyl benzene)		0.5	<0.5
			μg/L		
		Isopropylbenzene (Cumene)	μg/L	0.5	<0.5
		n-propylbenzene	μg/L	0.5	<0.5
		1,3,5-trimethylbenzene	μg/L	0.5	<0.5
		tert-butylbenzene	μg/L	0.5	<0.5
		1,2,4-trimethylbenzene	µg/L	0.5	<0.5
		sec-butylbenzene	μg/L	0.5	<0.5
		p-isopropyltoluene	μg/L	0.5	<0.5
		n-butylbenzene		0.5	<0.5
	Nikee		μg/L		
	Nitrogenous Compounds	Acrylonitrile	μg/L	0.5	<0.5
	Oxygenated Compounds	Acetone (2-propanone)	μg/L	10	<10
		MtBE (Methyl-tert-butyl ether)	μg/L	2	<2
		Vinyl acetate	μg/L	10	<10
		MEK (2-butanone)	μg/L	10	<10
		MIBK (4-methyl-2-pentanone)	μg/L	5	<5
		2-hexanone (MBK)	μg/L	5	<5
	Rolycyclic V/OC-				
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Sulphonated	Carbon disulfide	μg/L	2	<2
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	109
		d4-1,2-dichloroethane (Surrogate)	%	-	106
		d8-toluene (Surrogate)	%	-	86
		Bromofluorobenzene (Surrogate)	%	-	93
	Trihalomethanes	Chloroform (THM)	μg/L	0.5	<0.5

VOCs in Water (continued)

METHOD BLANKS

SE178657 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	
LB147166.001	Trihalomethanes	Bromodichloromethane (THM)	μg/L	0.5	<0.5	
		Dibromochloromethane (THM)	μg/L	0.5	<0.5	
		Bromoform (THM)	μg/L	0.5	<0.5	
Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN43						
Sample Number		Parameter	Units	LOR	Result	
LB147166.001		TRH C6-C9	μg/L	40	<40	
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	114	
		d4-1,2-dichloroethane (Surrogate)	%	-	115	
		d8-toluene (Surrogate)	%	-	95	
		Bromofluorobenzene (Surrogate)	%	-	76	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)	lercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Per							
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178639.004	LB147394.014	Mercury	µg/L	0.0001	<0.0001	<0.0001	153	0
SE178827.010	LB147394.024	Mercury	μg/L	0.0001	-0.039	-0.0372	146	0

Total Phenolics in Water

Total Phenolics in W	/ater				Method: ME-(AU)-[ENV]			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178657.001	LB147167.004	Total Phenols	mg/L	0.01	<0.01	<0.01	200	0

on Matale (Dissolved) in Water by ICRMS

								<u> </u>	(ENVJAN3
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178658.005	LB147330.014		Aluminium, Al	µg/L	5	-2.051	-1.634	200	0
			Arsenic, As	µg/L	1	-0.007	-0.011	200	0
			Cadmium, Cd	µg/L	0.1	0	0	200	0
			Chromium, Cr	µg/L	1	0.583	0.638	179	0
			Copper, Cu	µg/L	1	0.01	0.048	200	0
			Lead, Pb	µg/L	1	-0.144	-0.147	200	0
			Nickel, Ni	µg/L	1	-0.044	-0.062	200	0
			Zinc, Zn	µg/L	5	-0.225	0.034	200	0
E178777.004	LB147330.018		Arsenic, As	µg/L	1	<1	<1	200	0
			Cadmium, Cd	µg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	µg/L	1	<1	<1	200	0
			Copper, Cu	µg/L	1	<1	<1	200	0
			Lead, Pb	µg/L	1	<1	<1	200	0
			Nickel, Ni	µg/L	1	<1	<1	200	0
			Zinc, Zn	µg/L	5	<5	<5	200	0
OCs in Water							Meth	od: ME-(AU)-	
Driginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
E178658.001	LB147166.023	Furnisente			0.5	0 Originar	0 0	200	0
E170050.001	LB147100.023	Fumigants	2,2-dichloropropane	µg/L	0.5	0	0	200	0
			1,2-dichloropropane	µg/L					
			cis-1,3-dichloropropene	µg/L	0.5	0	0	200	0
			trans-1,3-dichloropropene	μg/L	0.5	0	0	200	0
			1,2-dibromoethane (EDB)	μg/L	0.5	0	0	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	μg/L	5	0	0	200	0
		Aliphatics	Chloromethane	μg/L	5	3.7	0	200	0
			Vinyl chloride (Chloroethene)	μg/L	0.3	0	0	200	0
			Bromomethane	μg/L	10	1.14	1.2		
			Chloroethane	μg/L	5	0	0	200	0
			Trichlorofluoromethane	μg/L	1	0	0	200	0
			lodomethane	µg/L	5	0	0	200	0
			1,1-dichloroethene	μg/L	0.5	0	0	200	0
			Dichloromethane (Methylene chloride)	μg/L	5	0.36	0.13	200	0
			Allyl chloride	µg/L	2	0	0	200	0
			trans-1,2-dichloroethene	µg/L	0.5	0	0	200	0
			1,1-dichloroethane	µg/L	0.5	0	0	200	0
			cis-1,2-dichloroethene	µg/L	0.5	0	0	200	0
			Bromochloromethane	µg/L	0.5	0	0.34	200	0
			1,2-dichloroethane	µg/L	0.5	0	0	200	0
			1,1,1-trichloroethane	µg/L	0.5	0	0	200	0
			1,1-dichloropropene	µg/L	0.5	0	0	200	0
			Carbon tetrachloride	µg/L	0.5	0	0	200	0
			Dibromomethane	µg/L	0.5	0	0	200	0
			Trichloroethene (Trichloroethylene, TCE)	µg/L	0.5	0	0	200	0
			1,1,2-trichloroethane	µg/L	0.5	0	0	200	0
			1,3-dichloropropane	µg/L	0.5	0.09	0.11	200	0
			Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	0.09	0	200	0
			1,1,1,2-tetrachloroethane	µg/L	0.5	0	0	200	0
			cis-1,4-dichloro-2-butene	μg/L	1	0	0	200	0
			1,1,2,2-tetrachloroethane	µg/L	0.5	0	0	200	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

OCs in Water (co	· · · · ·		Deve w of ev		108-	Orterio I		od: ME-(AU)	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD 9
SE178658.001	LB147166.023	Halogenated	1,2,3-trichloropropane	μg/L	0.5	0	0	200	0
		Aliphatics	trans-1,4-dichloro-2-butene	μg/L	1	0	0	200	0
			1,2-dibromo-3-chloropropane	μg/L	0.5	0	0	200	0
			Hexachlorobutadiene	μg/L	0.5	0	0	200	0
		Halogenated	Chlorobenzene	μg/L	0.5	0.04	0	200	0
		Aromatics	Bromobenzene	µg/L	0.5	0	0	200	0
			2-chlorotoluene	µg/L	0.5	0	0	200	0
			4-chlorotoluene	µg/L	0.5	0	0	200	0
			1,3-dichlorobenzene	µg/L	0.5	0	0	200	0
			1,4-dichlorobenzene	µg/L	0.3	0	0	200	0
			1,2-dichlorobenzene	μg/L	0.5	0	0	200	0
			1,2,4-trichlorobenzene	μg/L	0.5	0	0	200	0
			1,2,3-trichlorobenzene	μg/L	0.5	0	0	200	0
		Monocyclic	Benzene	μg/L	0.5	0.04	0.09	200	0
		Aromatic	Toluene	μg/L	0.5	0.05	0.06	200	0
			Ethylbenzene	µg/L	0.5	0.03	0.02	200	0
			m/p-xylene	µg/L	1	0.04	0.03	200	0
			o-xylene	μg/L	0.5	0.02	0.02	200	0
			Styrene (Vinyl benzene)	μg/L	0.5	0	0.03	200	0
			Isopropylbenzene (Cumene)	μg/L	0.5	0	0.02	200	0
			n-propylbenzene	μg/L	0.5	0	0	200	0
			1,3,5-trimethylbenzene	μg/L	0.5	0	0	200	0
			tert-butylbenzene	μg/L	0.5	0	0	200	0
			1,2,4-trimethylbenzene	μg/L	0.5	0	0	200	0
			sec-butylbenzene		0.5	0	0	200	0
				μg/L		0			
			p-isopropyltoluene	μg/L	0.5		0	200	0
			n-butylbenzene	μg/L	0.5	0	0	200	0
		Nitrogenous	Acrylonitrile	µg/L	0.5	0	0	200	0
		Oxygenated	Acetone (2-propanone)	µg/L	10	1.41	2.38	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	µg/L	2	0	0	200	0
			Vinyl acetate	µg/L	10	0	0.79	200	0
			MEK (2-butanone)	μg/L	10	0	0	200	0
			MIBK (4-methyl-2-pentanone)	μg/L	5	0	0	200	0
			2-hexanone (MBK)	μg/L	5	0	0	200	0
		Polycyclic	Naphthalene	µg/L	0.5	0.48	0.02	200	0
		Sulphonated	Carbon disulfide	µg/L	2	0	0.03	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.47	5.6	30	2
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.09	5.09	30	0
			d8-toluene (Surrogate)	μg/L	-	4.46	4.54	30	2
			Bromofluorobenzene (Surrogate)	μg/L	-	4.9	4.44	30	10
		Trihalomethan	Chloroform (THM)	μg/L	0.5	1.83	2.15	55	16
		es	Bromodichloromethane (THM)	μg/L	0.5	0	0	200	0
		63							
			Dibromochloromethane (THM)	μg/L	0.5	0	0	200	0
E4700E0 004	1.04/7/00 00/		Bromoform (THM)	μg/L	0.5	0	0	200	0
E178658.004	LB147166.024	Monocyclic	Benzene	μg/L	0.5	0.04	0.08	200	0
		Aromatic	Toluene	μg/L	0.5	0.04	0.04	200	0
			Ethylbenzene	µg/L	0.5	0.01	0.01	200	0
			m/p-xylene	μg/L	1	0.01	0.02	200	0
			o-xylene	µg/L	0.5	0.01	0.01	200	0
		Polycyclic	Naphthalene	µg/L	0.5	0.15	0.01	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	6.21	5.87	30	6
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	6.09	5.37	30	13
			d8-toluene (Surrogate)	µg/L	-	5.24	5.25	30	0
			Bromofluorobenzene (Surrogate)	μg/L	-	4.08	5.03	30	2
latila Detroloum	Hydrocarbons in Wa	iter	<u>-</u>					od: ME-(AU)	
									<u> </u>
riginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	
E178658.001	LB147166.023		TRH C6-C10	μg/L	50	0	0	200	0
			TRH C6-C9	μg/L	40	0	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	6.04	5.66	30	6
			d4-1,2-dichloroethane (Surrogate)	µg/L	_	5.52	5.24	30	5

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178658.001	LB147166.023	Surrogates	d8-toluene (Surrogate)	μg/L	-	4.85	4.94	30	2
			Bromofluorobenzene (Surrogate)	μg/L	-	3.61	4.47	30	21
		VPH F Bands	Benzene (F0)	μg/L	0.5	0.04	0.09	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	-0.15	-0.22	200	0
SE178658.004	LB147166.024		TRH C6-C10	μg/L	50	0	0	200	0
			TRH C6-C9	μg/L	40	0	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	6.21	5.87	30	6
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	6.09	5.37	30	13
			d8-toluene (Surrogate)	μg/L	-	5.24	5.25	30	0
			Bromofluorobenzene (Surrogate)	μg/L	-	4.08	5.03	30	21
		VPH F Bands	Benzene (F0)	μg/L	0.5	0.04	0.08	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	-0.11	-0.16	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB147222.002	Naphthalene	µg/L	0.1	26	40	60 - 140	64
	Acenaphthylene	µg/L	0.1	29	40	60 - 140	72
	Acenaphthene	µg/L	0.1	28	40	60 - 140	71
	Phenanthrene	µg/L	0.1	32	40	60 - 140	79
	Anthracene	µg/L	0.1	29	40	60 - 140	73
	Fluoranthene	µg/L	0.1	31	40	60 - 140	77
	Pyrene	µg/L	0.1	31	40	60 - 140	77
	Benzo(a)pyrene	µg/L	0.1	34	40	60 - 140	84
Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.3	0.5	40 - 130	62
	2-fluorobiphenyl (Surrogate)	µg/L	-	0.3	0.5	40 - 130	62
	d14-p-terphenyl (Surrogate)	µg/L	-	0.3	0.5	40 - 130	66
Total Phenolics in Water	Total Phenolics in Water Method: ME-(AU)-[ENV]AN28						
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB147167.002	Total Phenols	mg/L	0.01	0.23	0.25	80 - 120	92

Trace Metals (D	issolved) in	Water by	

TRH >C34-C40 (F4)

Bromofluorobenzene (Surrogate)

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB147330.002	Aluminium, Al	μg/L	5	18	20	80 - 120	90
	Arsenic, As	μg/L	1	20	20	80 - 120	98
	Cadmium, Cd	μg/L	0.1	24	20	80 - 120	120
	Chromium, Cr	µg/L	1	20	20	80 - 120	102
	Copper, Cu	μg/L	1	21	20	80 - 120	106
	Lead, Pb	μg/L	1	24	20	80 - 120	119
	Nickel, Ni	μg/L	1	21	20	80 - 120	106
	Zinc, Zn	μg/L	5	21	20	80 - 120	103
TRH (Total Recoverable Hydro	carbons) in Water				N	lethod: ME-(A	U)-[ENV]AN40
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB147222.002	TRH C10-C14	µg/L	50	950	1200	60 - 140	79
	TRH C15-C28	μg/L	200	1100	1200	60 - 140	95
	TRH C29-C36	µg/L	200	1200	1200	60 - 140	99
TRH F Bar	nds TRH >C10-C16	µg/L	60	1000	1200	60 - 140	87
	TRH >C16-C34 (F3)	μg/L	500	1100	1200	60 - 140	96

µg/L

µg/L

500

680

5.8

5

60 - 140

600

60 - 140

113

VOCs in Water Method: ME-(AU)-[ENV]AN433 Sample Number Units LOR Expected Criteria % Recovery % Parameter Result LB147166.002 Halogenated 1.1-dichloroethene µg/L 0.5 51 45.45 60 - 140 113 Aliphatics 1,2-dichloroethane µg/L 0.5 50 45.45 60 - 140 111 45.45 Trichloroethene (Trichloroethylene,TCE) 0.5 50 60 - 140 110 µg/L Halogenated Chlorobenzene 0.5 50 45.45 60 - 140 110 μg/L Monocyclic Benzene µg/L 0.5 51 45.45 60 - 140 112 Aromatic Toluene 0.5 50 45.45 60 - 140 110 µg/L Ethylbenzene µg/L 0.5 51 45.45 60 - 140 111 m/p-xylene µg/L 1 100 90.9 60 - 140 111 0.5 50 45.45 60 - 140 110 o-xylene µg/L Surrogates Dibromofluoromethane (Surrogate) 90 μg/L 4.5 5 60 - 140 d4-1,2-dichloroethane (Surrogate) µg/L 44 5 60 - 140 87 4.6 60 - 140 93 d8-toluene (Surrogate) 5 µg/L -Bromofluorobenzene (Surrogate) µg/L 5.8 5 60 - 140 116 Trihalomethan Chloroform (THM) µg/L 0.5 50 45.45 60 - 140 110 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units LOR Result Expected Criteria % Recovery % LB147166.002 **TRH C6-C10** µg/L 50 950 946.63 60 - 140 101 TRH C6-C9 40 720 818.71 60 - 140 88 µg/L Surrogates Dibromofluoromethane (Surrogate) 5.0 60 - 140 101 5 µg/L d4-1,2-dichloroethane (Surrogate) µg/L 4.8 5 60 - 140 96 d8-toluene (Surrogate) µg/L 4.8 5 60 - 140 96

116

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Water (continued)							N	Method: ME-(AU)-[ENV]AN433		
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %	
LB147166.002	VPH F Bands	TRH C6-C10 minus BTEX (F1)		μg/L	50	620	639.67	60 - 140	97	

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN								I (Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178767.001	LB147394.004	Mercury	mg/L	0.0001	0.0062	<0.00005	0.008	78

Total Phenolics in Water

Total Phenolics in Water Method: ME-(AU)-[EN							J)-[ENV]AN289	
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178733.001	LB147167.012	Total Phenols	mg/L	0.01	0.74	0.53	0.25	87

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Di	ssolved) in Water by	ICPMS					Me	thod: ME-(AU)-[ENV]AN318
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178657.001	LB147330.004		Aluminium, Al	μg/L	5	33	14	20	92
			Arsenic, As	μg/L	1	26	<1	20	128
			Cadmium, Cd	μg/L	0.1	24	0.2	20	120
			Chromium, Cr	μg/L	1	22	4	20	92
			Copper, Cu	μg/L	1	49	36	20	67 ⑤
			Lead, Pb	μg/L	1	25	3	20	110
			Nickel, Ni	μg/L	1	31	15	20	78
			Zinc, Zn	μg/L	5	100	86	20	66 (5)
VOCs in Water							Me	thod: ME-(AU)-[ENV]AN433
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Original	Spike	Recovery%	, 0
SE178657.001	LB147166.025	Monocyclic	Benzene	μg/L	0.5	<0.5	45.45	113	
		Aromatic	Toluene	μg/L	0.5	<0.5	45.45	112	
			Ethylbenzene	μg/L	0.5	<0.5	45.45	119	
			m/p-xylene	μg/L	1	<1	90.9	123	
			o-xylene	μg/L	0.5	<0.5	45.45	127	
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	-	-	
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.8	-	92	
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.4	-	89	
			d8-toluene (Surrogate)	μg/L	-	4.5	-	94	
			Bromofluorobenzene (Surrogate)	μg/L	-	5.1	-	99	
Volatile Petroleu	m Hydrocarbons in \	Vater					Me	thod: ME-(AU)-[ENV]AN433
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178657.001	LB147166.025		TRH C6-C10	μg/L	50	1000	<50	946.63	106
			TRH C6-C9	µg/L	40	830	<40	818.71	101
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.6	6.4	-	92
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.4	5.9	-	89
			d8-toluene (Surrogate)	μg/L	-	4.7	5.1	-	94
			Bromofluorobenzene (Surrogate)	μg/L	-	5.0	3.8	-	99
		VPH F	Benzene (F0)	μg/L	0.5	51	<0.5	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	670	<50	639.67	105

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.